Plot function for time-dependent ROC curve
This function plots time-dependent ROC curve estimate.
## S3 method for class 'ipcwsurvivalROC' plot(x, time, col = "red", add = FALSE, title = TRUE, ...) ## S3 method for class 'ipcwcompetingrisksROC' plot(x, FP = 2, time, col = "red", add = FALSE, title = TRUE, ...)
x |
An object of class "ipcwcompetingrisksROC". The object |
FP |
A numeric value that indicates which definition of controls the ROC
curve is plotted in the competing risks setting. |
time |
A numeric value that indicates the time point at which the ROC curve is plotted. |
col |
The color to plot the ROC curve. Default is |
add |
A logical value that indicates if you only want to add the ROC curve estimate to a pre-existing plot. Default is |
title |
A logical value that indicates if you want to add a generic title, that indicates the chosen time point and the AUC estimate. Default is |
... |
Arguments to be passed to plot method. (See |
Paul Blanche pabl@sund.ku.dk
##-------------Without competing risks---------------- library(survival) data(pbc) pbc<-pbc[!is.na(pbc$trt),] # select only randomised subjects pbc$status<-as.numeric(pbc$status==2) # create event indicator: 1 for death, 0 for censored # we evaluate bilirubin as a prognostic biomarker #(weights computed using an additive Aalen model # with covariates bili, chol and albumin). library(timereg) ROC.bili.aalen<-timeROC(T=pbc$time, delta=pbc$status,marker=pbc$bili, other_markers=as.matrix(pbc[,c("chol","albumin")]), cause=1,weighting="aalen", times=c(1800,2000,2200)) #print estimates ROC.bili.aalen #plot the ROC curve at time t=2000 plot(ROC.bili.aalen,time=2000) # we evaluate albumin and cholesterol as a prognostic biomarker. #(weights computed using an additive Aalen model # with covariates bili, chol and albumin). ROC.albu.aalen<-timeROC(T=pbc$time, delta=pbc$status,marker=-pbc$albumin, other_markers=as.matrix(pbc[,c("chol","bili")]), cause=1,weighting="aalen", times=c(1800,2000,2200)) ROC.chol.aalen<-timeROC(T=pbc$time, delta=pbc$status,marker=pbc$chol, other_markers=as.matrix(pbc[,c("bili","albumin")]), cause=1,weighting="aalen", times=c(1800,2000,2200)) # print estimates ROC.albu.aalen ROC.chol.aalen # plot all ROC curves at time t=2000 plot(ROC.bili.aalen,time=2000,lwd=2,title=FALSE) plot(ROC.albu.aalen,time=2000,col="blue",add=TRUE,lwd=2,lty=2) plot(ROC.chol.aalen,time=2000,col="black",add=TRUE,lwd=2,lty=3) # add legend legend("bottomright",c("bilirubin","albumin","cholesterol"), col=c("red","blue","black"),lty=1:3) ##-------------With competing risks------------------- #---------Example with Melano data------------- data(Melano) # Evaluate tumor thickness as a prognostic biomarker for # death from malignant melanoma. ROC.thick<-timeROC(T=Melano$time,delta=Melano$status, weighting="aalen", marker=Melano$thick,cause=1, times=c(1800,2000,2200)) plot(ROC.thick,time=1800) #---------Example with Paquid data------------- data(Paquid) # evaluate DDST cognitive score as a prognostic tool for # dementia onset, accounting for death without dementia competing risk. ROC.DSST<-timeROC(T=Paquid$time,delta=Paquid$status, marker=-Paquid$DSST,cause=1, weighting="cox", other_markers=as.matrix(Paquid$MMSE), times=c(3,5,10),ROC=TRUE) # we compare MMSE and DSST cognitive tests as prognostic tools # for dementia, accounting for death without dementia competing risk. ROC.MMSE<-timeROC(T=Paquid$time,delta=Paquid$status, marker=-Paquid$MMSE,cause=1, weighting="cox", other_markers=as.matrix(Paquid$DSST), times=c(3,5,10),ROC=TRUE) plot(ROC.DSST,time=5,title=FALSE,lwd=2) plot(ROC.MMSE,time=5,col="blue",add=TRUE,title=FALSE,lwd=2) legend("right",c("DSST","MMSE"),col=c("red","blue"),lwd=2)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.