Plot time-dependent AUC curve
This function plots the curve of time-dependent-AUC: AUC(t) versus t. Pointwise and simultaneous confidence bands for this curve can also be plotted when inverse probability of censoring weights are computed from a Kaplan-Meier estimator.
plotAUCcurve(object, FP = 2, add = FALSE, conf.int = FALSE, conf.band = FALSE, col = "black")
object |
An object of class "ipcwsurvivalROC" or "ipcwcompetingrisksROC"
previously estimated from the |
FP |
In the competing risks setting, a numeric value that indicates which
definition of AUC is plotted. |
add |
A logical value that indicates if you want to add the AUC curve to a pre-existing plot. Default is |
conf.int |
A logical value that indicates whether or not you want to plot the bands
of pointwise confidence intervals. Default is |
conf.band |
A logical value that indicates whether or not you want to plot the simultaneous confidence bands. Default is |
col |
The color to plot the AUC curve. Default is |
Paul Blanche pabl@sund.ku.dk
Blanche, P., Dartigues, J. F., & Jacqmin-Gadda, H. (2013). Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Statistics in medicine, 32(30), 5381-5397.
Hung, H. and Chiang, C. (2010). Estimation methods for time-dependent AUC with survival data. Canadian Journal of Statistics, 38(1):8-26
confint
for confidence intervals and confidence bands computation of time-dependentAUC.
plotAUCcurveDiff
for plotting the curve of the
difference of two time-dependent AUCs over time
with eventually confidence intervals and
simultaneous confidence bands.
## Not run: ## computation times is roughly 10 seconds ##-------------Without competing risks------------------- library(survival) data(pbc) head(pbc) pbc<-pbc[!is.na(pbc$trt),] # select only randomised subjects pbc$status<-as.numeric(pbc$status==2) # create event indicator: 1 for death, 0 for censored # we evaluate bilirubin as a prognostic biomarker for death. ROC.bili<-timeROC(T=pbc$time, delta=pbc$status,marker=pbc$bili, cause=1,weighting="marginal", times=quantile(pbc$time,probs=seq(0.2,0.8,0.02)), iid=TRUE) ROC.bili # we evaluate bilirubin as a prognostic biomarker for death. ROC.albumin<-timeROC(T=pbc$time, delta=pbc$status,marker=-pbc$albumin, cause=1,weighting="marginal", times=quantile(pbc$time,probs=seq(0.2,0.8,0.02)), iid=TRUE) ROC.albumin # plot AUC curve for albumin only with pointwise confidence intervals # and simultaneous confidence bands plotAUCcurve(ROC.albumin,conf.int=TRUE,conf.band=TRUE) # plot AUC curve for albumin and bilirunbin with pointwise confidence intervals plotAUCcurve(ROC.albumin,conf.int=TRUE,col="red") plotAUCcurve(ROC.bili,conf.int=TRUE,col="blue",add=TRUE) legend("bottomright",c("albumin","bilirunbin"),col=c("red","blue"),lty=1,lwd=2) ##-------------With competing risks------------------- data(Melano) head(Melano) # Evaluate tumor thickness as a prognostic biomarker for # death from malignant melanoma. ROC.thick<-timeROC(T=Melano$time,delta=Melano$status, marker=Melano$thick,cause=1, times=quantile(Melano$time,probs=seq(0.2,0.8,0.01)), iid=TRUE) ROC.thick # plot AUC curve for tumor thickness with pointwise confidence intervals # and simultaneous confidence bands plotAUCcurve(ROC.thick,FP=2,conf.int=TRUE,conf.band=TRUE) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.