Make a direction of causation model based on umxPath statements
Makes a direction of causation model with umxPath()
statements
umxDoCp( var1Indicators, var2Indicators, mzData = NULL, dzData = NULL, sep = "_T", causal = TRUE, name = "DoC", autoRun = getOption("umx_auto_run"), intervals = FALSE, tryHard = c("no", "yes", "ordinal", "search"), optimizer = NULL )
var1Indicators |
The indicators of trait 1 |
var2Indicators |
The indicators of trait 2 |
mzData |
The MZ twin dataframe |
dzData |
The DZ twin dataframe |
sep |
(Default "_T") |
causal |
(Default TRUE) |
name |
= "DoC" |
autoRun |
Default: getOption("umx_auto_run")_ |
intervals |
Whether to run intervals (Default FALSE) |
tryHard |
Default "no" (valid = "yes", "ordinal", "search") |
optimizer |
Whether to set this for this run (Default no)) |
See also umxDoC()
[A direction of causation model with umxPath()
statements.
Other Twin Modeling Functions:
power.ACE.test()
,
umxACEcov()
,
umxACEv()
,
umxACE()
,
umxCP()
,
umxDoC()
,
umxGxE_window()
,
umxGxEbiv()
,
umxGxE()
,
umxIP()
,
umxReduceACE()
,
umxReduceGxE()
,
umxReduce()
,
umxRotate.MxModelCP()
,
umxSexLim()
,
umxSimplex()
,
umxSummarizeTwinData()
,
umxSummaryACEv()
,
umxSummaryACE()
,
umxSummaryDoC()
,
umxSummaryGxEbiv()
,
umxSummarySexLim()
,
umxSummarySimplex()
,
umxTwinMaker()
,
umx
## Not run: # ================ # = 1. Load Data = # ================ data(docData) var1 = paste0("varA", 1:3) var2 = paste0("varB", 1:3) tmp = umx_scale_wide_twin_data(varsToScale= c(var1, var2), sep= "_T", data= docData) mzData = subset(docData, zygosity %in% c("MZFF", "MZMM")) dzData = subset(docData, zygosity %in% c("DZFF", "DZMM")) m1 = umxDoCp(var1, var2, mzData= mzData, dzData= dzData, sep = "_T", causal= TRUE) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.