FIML-based polychoric, polyserial, and Pearson correlations
Compute polychoric/polyserial/Pearson correlations with FIML.
umx_polychoric( data, useDeviations = TRUE, tryHard = c("no", "yes", "ordinal", "search") )
data |
Dataframe |
useDeviations |
Whether to code the mode using deviation thresholds (default = TRUE) |
tryHard |
'no' uses normal mxRun (default), "yes" uses mxTryHard, and others used named versions: "mxTryHardOrdinal", "mxTryHardWideSearch" |
- list of output and diagnostics. matrix of correlations = $polychorics
- Barendse, M. T., Ligtvoet, R., Timmerman, M. E., & Oort, F. J. (2016). Model Fit after Pairwise Maximum Likelihood. *Frontiers in psychology*, **7**, 528. doi: 10.3389/fpsyg.2016.00528.
Other Data Functions:
noNAs()
,
umxFactor()
,
umxHetCor()
,
umx_as_numeric()
,
umx_cont_2_quantiles()
,
umx_lower2full()
,
umx_make_MR_data()
,
umx_make_TwinData()
,
umx_make_fake_data()
,
umx_make_raw_from_cov()
,
umx_polypairwise()
,
umx_polytriowise()
,
umx_read_lower()
,
umx_read_prolific_demog()
,
umx_rename()
,
umx_reorder()
,
umx_score_scale()
,
umx_select_valid()
,
umx_stack()
,
umx
tmp = mtcars tmp$am = umxFactor(mtcars$am) tmp$vs = umxFactor(mtcars$vs) tmp = umx_scale(tmp) x = umx_polychoric(tmp[, c("am", "vs")], tryHard = "yes") x$polychorics cor(mtcars[, c("am", "vs")])
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.