Get variances from a df that might contain some non-numeric columns
Pass in any dataframe and get variances despite some non-numeric columns. Cells involving these non-numeric columns are set to ordVar (default = 1).
umx_var( df, format = c("full", "diag", "lower"), use = c("complete.obs", "pairwise.complete.obs", "everything", "all.obs", "na.or.complete"), ordVar = 1, digits = NULL, strict = TRUE, allowCorForFactorCovs = FALSE )
df |
A dataframe of raw data from which to get variances. |
format |
to return: options are c("full", "diag", "lower"). Defaults to full, but this is not implemented yet. |
use |
Passed to |
ordVar |
The value to return at any ordinal columns (defaults to 1). |
digits |
digits to round output to (Ignored if NULL). Set for easy printing. |
strict |
Whether to allow non-ordered factors to be processed (default = FALSE (no)). |
allowCorForFactorCovs |
When ordinal data are present, use heterochoric correlations in affected cells, in place of covariances. |
Other Miscellaneous Stats Functions:
FishersMethod()
,
SE_from_p()
,
geometric_mean()
,
harmonic_mean()
,
oddsratio()
,
reliability()
,
umxCov2cor()
,
umxHetCor()
,
umxWeightedAIC()
,
umx_apply()
,
umx_cor()
,
umx_means()
,
umx_r_test()
,
umx_round()
,
umx_scale()
,
umx
tmp = mtcars[,1:4] tmp$cyl = ordered(mtcars$cyl) # ordered factor tmp$hp = ordered(mtcars$hp) # binary factor umx_var(tmp, format = "diag", ordVar = 1, use = "pair") tmp2 = tmp[, c(1, 3)] umx_var(tmp2, format = "diag") umx_var(tmp2, format = "full") data(myFADataRaw) df = myFADataRaw[,c("z1", "z2", "z3")] df$z1 = mxFactor(df$z1, levels = c(0, 1)) df$z2 = mxFactor(df$z2, levels = c(0, 1)) df$z3 = mxFactor(df$z3, levels = c(0, 1, 2)) umx_var(df, format = "diag") umx_var(df, format = "full", allowCorForFactorCovs=TRUE) # Ordinal/continuous mix data(twinData) twinData= umx_scale_wide_twin_data(data=twinData,varsToScale="wt",sep= "") # Cut BMI column to form ordinal obesity variables obLevels = c('normal', 'overweight', 'obese') cuts = quantile(twinData[, "bmi1"], probs = c(.5, .8), na.rm = TRUE) twinData$obese1=cut(twinData$bmi1,breaks=c(-Inf,cuts,Inf),labels=obLevels) twinData$obese2=cut(twinData$bmi2,breaks=c(-Inf,cuts,Inf),labels=obLevels) # Make the ordinal variables into mxFactors ordDVs = c("obese1", "obese2") twinData[, ordDVs] = umxFactor(twinData[, ordDVs]) varStarts = umx_var(twinData[, c(ordDVs, "wt1", "wt2")], format= "diag", ordVar = 1, use = "pairwise.complete.obs")
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.