Fit the Rota et al. (2016) Multi-species Occupancy Model
This function fits the multispecies occupancy model of Rota et al (2016).
occuMulti(detformulas, stateformulas, data, maxOrder, starts, method="BFGS", se=TRUE, engine=c("C","R"), silent=FALSE, ...)
detformulas |
Character vector of formulas for the detection models, one per species. |
stateformulas |
Character vector of formulas for the natural parameters.
To fix a natural parameter at 0, specify the corresponding formula as |
data |
An |
maxOrder |
Optional; specify maximum interaction order. Defaults to number of species (all possible interactions). Reducing this value may speed up optimization if you aren't interested in higher-order interactions. |
starts |
Vector of parameter starting values. |
method |
Optimization method used by |
se |
Logical specifying whether or not to compute standard errors. |
engine |
Either "C" to use fast C++ code or "R" to use native R code during the optimization. |
silent |
Boolean; if |
... |
Additional arguments to optim, such as lower and upper bounds |
See unmarkedFrame
and unmarkedFrameOccuMulti
for a
description of how to supply data to the data
argument.
occuMulti
fits the multispecies occupancy model from Rota et al. (2016),
for two or more interacting species.
The model generalizes the standard single-species occupancy model from
MacKenzie et al. (2002).
The latent occupancy state at site i for a set of s potentially
interacting species is a vector Z_i of length s
containing a sequence of the values 0 or 1. For example, when s = 2,
the possible states are [11], [10], [01], or [00],
corresponding to both species present, only species 1 or species 2 present,
or both species absent, respectively. The latent state modeled as a
multivariate Bernoulli random variable:
Z_i ~ MVB(psi_i)
where ψ_i is a vector of length 2^s containing the probability of each possible combination of 0s and 1s, such that sum(psi_i) = 1.
For s = 2, the corresponding natural parameters f are
f_1 = log(psi_10/psi_00)
f_2 = log(psi_01/psi_00)
f_12 = log((psi_11 * psi_00)/(psi_10 * psi_01))
The natural parameters can then be modeled as linear functions of covariates.
Covariates for each f must be specified with the stateformulas
argument,
which takes a character vector of individual formulas of length equal to the number of
natural parameters (which in turn depends on the number of species in the model).
The observation process is similar to the standard single-species occupancy model, except that the observations y_ij at site i on occasion j are vectors of length s and there are independent values of detection probability p for each species s:
y_ij | Z_i ~ Bernoulli(Z_i * p_sij)
Independent detection models (potentially containing different covariates)
must be provided for each species with the detformulas
argument,
which takes a character vector of individual formulas with length equal to
the number of species s.
unmarkedFitOccuMulti object describing the model fit.
Ken Kellner contact@kenkellner.com
MacKenzie, D. I., J. D. Nichols, G. B. Lachman, S. Droege, J. Andrew Royle, and C. A. Langtimm. 2002. Estimating Site Occupancy Rates When Detection Probabilities Are Less Than One. Ecology 83: 2248-2255.
Rota, C.T., et al. 2016. A multi-species occupancy model for two or more interacting species. Methods in Ecology and Evolution 7: 1164-1173.
## Not run: #Simulate 3 species data N <- 1000 nspecies <- 3 J <- 5 occ_covs <- as.data.frame(matrix(rnorm(N * 10),ncol=10)) names(occ_covs) <- paste('occ_cov',1:10,sep='') det_covs <- list() for (i in 1:nspecies){ det_covs[[i]] <- matrix(rnorm(N*J),nrow=N) } names(det_covs) <- paste('det_cov',1:nspecies,sep='') #True vals beta <- c(0.5,0.2,0.4,0.5,-0.1,-0.3,0.2,0.1,-1,0.1) f1 <- beta[1] + beta[2]*occ_covs$occ_cov1 f2 <- beta[3] + beta[4]*occ_covs$occ_cov2 f3 <- beta[5] + beta[6]*occ_covs$occ_cov3 f4 <- beta[7] f5 <- beta[8] f6 <- beta[9] f7 <- beta[10] f <- cbind(f1,f2,f3,f4,f5,f6,f7) z <- expand.grid(rep(list(1:0),nspecies))[,nspecies:1] colnames(z) <- paste('sp',1:nspecies,sep='') dm <- model.matrix(as.formula(paste0("~.^",nspecies,"-1")),z) psi <- exp(f %*% t(dm)) psi <- psi/rowSums(psi) #True state ztruth <- matrix(NA,nrow=N,ncol=nspecies) for (i in 1:N){ ztruth[i,] <- as.matrix(z[sample(8,1,prob=psi[i,]),]) } p_true <- c(0.6,0.7,0.5) # fake y data y <- list() for (i in 1:nspecies){ y[[i]] <- matrix(NA,N,J) for (j in 1:N){ for (k in 1:J){ y[[i]][j,k] <- rbinom(1,1,ztruth[j,i]*p_true[i]) } } } names(y) <- c('coyote','tiger','bear') #Create the unmarked data object data = unmarkedFrameOccuMulti(y=y,siteCovs=occ_covs,obsCovs=det_covs) #Summary of data object summary(data) plot(data) # Look at f parameter design matrix data@fDesign # Formulas for state and detection processes # Length should match number/order of columns in fDesign occFormulas <- c('~occ_cov1','~occ_cov2','~occ_cov3','~1','~1','~1','~1') #Length should match number/order of species in data@ylist detFormulas <- c('~1','~1','~1') fit <- occuMulti(detFormulas,occFormulas,data) #Look at output fit plot(fit) #Compare with known values cbind(c(beta,log(p_true/(1-p_true))),fit@opt$par) #predict method lapply(predict(fit,'state'),head) lapply(predict(fit,'det'),head) #marginal occupancy head(predict(fit,'state',species=2)) head(predict(fit,'state',species='bear')) head(predict(fit,'det',species='coyote')) #probability of co-occurrence of two or more species head(predict(fit, 'state', species=c('coyote','tiger'))) #conditional occupancy head(predict(fit,'state',species=2,cond=3)) #tiger | bear present head(predict(fit,'state',species='tiger',cond='bear')) #tiger | bear present head(predict(fit,'state',species='tiger',cond='-bear')) #bear absent head(predict(fit,'state',species='tiger',cond=c('coyote','-bear'))) #residuals (by species) lapply(residuals(fit),head) #ranef (by species) ranef(fit, species='coyote') #parametric bootstrap bt <- parboot(fit,nsim=30) #update model occFormulas <- c('~occ_cov1','~occ_cov2','~occ_cov2+occ_cov3','~1','~1','~1','~1') fit2 <- update(fit,stateformulas=occFormulas) #List of fitted models fl <- fitList(fit,fit2) coef(fl) #Model selection modSel(fl) #Fit model while forcing some natural parameters to be 0 #For example: fit model with no species interactions occFormulas <- c('~occ_cov1','~occ_cov2','~occ_cov2+occ_cov3','0','0','0','0') fit3 <- occuMulti(detFormulas,occFormulas,data) #Alternatively, you can force all interaction parameters above a certain #order to be zero with maxOrder. This will be faster. occFormulas <- c('~occ_cov1','~occ_cov2','~occ_cov2+occ_cov3') fit4 <- occuMulti(detFormulas,occFormulas,data,maxOrder=1) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.