Panel-generating Functions for Contingency Table Coplots
Panel-generating functions visualizing contingency tables that
can be passed to cotabplot
.
cotab_mosaic(x = NULL, condvars = NULL, ...) cotab_assoc(x = NULL, condvars = NULL, ylim = NULL, ...) cotab_sieve(x = NULL, condvars = NULL, ...) cotab_loddsratio(x = NULL, condvars = NULL, ...) cotab_agreementplot(x = NULL, condvars = NULL, ...) cotab_fourfold(x = NULL, condvars = NULL, ...) cotab_coindep(x, condvars, test = c("doublemax", "maxchisq", "sumchisq"), level = NULL, n = 1000, interpolate = c(2, 4), h = NULL, c = NULL, l = NULL, lty = 1, type = c("mosaic", "assoc"), legend = FALSE, ylim = NULL, ...)
x |
a contingency tables in array form. |
condvars |
margin name(s) of the conditioning variables. |
ylim |
y-axis limits for |
test |
character indicating which type of statistic should be used for assessing conditional independence. |
level,n,h,c,l,lty,interpolate |
variables controlling the HCL shading of the
residuals, see |
type |
character indicating which type of plot should be produced. |
legend |
logical. Should a legend be produced in each panel? |
... |
further arguments passed to the plotting function (such as
|
These functions of class "panel_generator"
are panel-generating
functions for use with cotabplot
, i.e., they return functions
with the interface
panel(x, condlevels)
The function cotab_coindep
is similar but additionally chooses an appropriate
residual-based shading visualizing the associated conditional independence
model. The conditional independence test is carried out via coindep_test
and the shading is set up via shading_hcl
.
A description of the underlying ideas is given in Zeileis, Meyer, Hornik (2005).
Achim Zeileis Achim.Zeileis@R-project.org
Meyer, D., Zeileis, A., and Hornik, K. (2006),
The strucplot framework: Visualizing multi-way contingency tables with
vcd.
Journal of Statistical Software, 17(3), 1-48.
doi: 10.18637/jss.v017.i03 and available as
vignette("strucplot")
.
Zeileis, A., Meyer, D., Hornik K. (2007), Residual-based shadings for visualizing (conditional) independence, Journal of Computational and Graphical Statistics, 16, 507–525.
data("UCBAdmissions") cotabplot(~ Admit + Gender | Dept, data = UCBAdmissions) cotabplot(~ Admit + Gender | Dept, data = UCBAdmissions, panel = cotab_assoc) cotabplot(~ Admit + Gender | Dept, data = UCBAdmissions, panel = cotab_fourfold) ucb <- cotab_coindep(UCBAdmissions, condvars = "Dept", type = "assoc", n = 5000, margins = c(3, 1, 1, 3)) cotabplot(~ Admit + Gender | Dept, data = UCBAdmissions, panel = ucb)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.