Occupational Mobility in Three Countries
Yamaguchi (1987) presented this three-way frequency table, cross-classifying occupational categories of sons and fathers in the United States, United Kingdom and Japan. This data set has become a classic for models comparing two-way mobility tables across layers corresponding to countries, groups or time (e.g., Goodman and Hout, 1998; Xie, 1992).
The US data were derived from the 1973 OCG-II survey; those for the UK from the 1972 Oxford Social Mobility Survey; those for Japan came from the 1975 Social Stratification and Mobility survey. They pertain to men aged 20-64.
data(Yamaguchi87)
A frequency data frame with 75 observations on the following 4 variables. The total sample size is 28887.
Son
a factor with levels UpNM
LoNM
UpM
LoM
Farm
Father
a factor with levels UpNM
LoNM
UpM
LoM
Farm
Country
a factor with levels US
UK
Japan
Freq
a numeric vector
Five status categories – upper and lower
nonmanuals (UpNM
, LoNM
),
upper and lower manuals (UpM
, LoM
),
and Farm
) are used for both fathers' occupations and
sons' occupations.
Upper nonmanuals are professionals, managers, and officials; lower nonmanuals are proprietors, sales workers, and clerical workers; upper manuals are skilled workers; lower manuals are semi-skilled and unskilled nonfarm workers; and farm workers are farmers and farm laborers.
Some of the models from Xie (1992), Table 1, are fit in demo(yamaguchi-xie)
.
Yamaguchi, K. (1987). Models for comparing mobility tables: toward parsimony and substance, American Sociological Review, vol. 52 (Aug.), 482-494, Table 1
Goodman, L. A. and Hout, M. (1998). Statistical Methods and Graphical Displays for Analyzing How the Association Between Two Qualitative Variables Differs Among Countries, Among Groups, Or Over Time: A Modified Regression-Type Approach. Sociological Methodology, 28 (1), 175-230.
Xie, Yu (1992). The log-multiplicative layer effect model for comparing mobility tables. American Sociological Review, 57 (June), 380-395.
data(Yamaguchi87) # reproduce Table 1 structable(~ Father + Son + Country, Yamaguchi87) # create table form Yama.tab <- xtabs(Freq ~ Son + Father + Country, data=Yamaguchi87) # define mosaic labeling_args for convenient reuse in 3-way displays largs <- list(rot_labels=c(right=0), offset_varnames = c(right = 0.6), offset_labels = c(right = 0.2), set_varnames = c(Son="Son's status", Father="Father's status") ) ################################### # Fit some models & display mosaics # Mutual independence yama.indep <- glm(Freq ~ Son + Father + Country, data=Yamaguchi87, family=poisson) anova(yama.indep) mosaic(yama.indep, ~Son+Father, main="[S][F] ignoring country") mosaic(yama.indep, ~Country + Son + Father, condvars="Country", labeling_args=largs, main='[S][F][C] Mutual independence') # no association between S and F given country ('perfect mobility') # asserts same associations for all countries yama.noRC <- glm(Freq ~ (Son + Father) * Country, data=Yamaguchi87, family=poisson) anova(yama.noRC) mosaic(yama.noRC, ~~Country + Son + Father, condvars="Country", labeling_args=largs, main="[SC][FC] No [SF] (perfect mobility)") # ignore diagonal cells yama.quasi <- update(yama.noRC, ~ . + Diag(Son,Father):Country) anova(yama.quasi) mosaic(yama.quasi, ~Son+Father, main="Quasi [S][F]") ## see also: # demo(yamaguchi-xie) ##
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.