Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

find.adaptive.basis

Determine an Orthonormal Basis for the Discrete Wavelet Packet Transform


Description

Subroutine for use in simulating seasonal persistent processes using the discrete wavelet packet transform.

Usage

find.adaptive.basis(wf, J, fG, eps)

Arguments

wf

Character string; name of the wavelet filter.

J

Depth of the discrete wavelet packet transform.

fG

Gegenbauer frequency.

eps

Threshold for the squared gain function.

Details

The squared gain functions for a Daubechies (extremal phase or least asymmetric) wavelet family are used in a filter cascade to compute the value of the squared gain function for the wavelet packet filter at the Gengenbauer frequency. This is done for all nodes of the wavelet packet table.

The idea behind this subroutine is to approximate the relationship between the discrete wavelet transform and long-memory processes, where the squared gain function is zero at frequency zero for all levels of the DWT.

Value

Boolean vector describing the orthonormal basis for the DWPT.

Author(s)

B. Whitcher

See Also

Used in dwpt.sim.


waveslim

Basic Wavelet Routines for One-, Two-, and Three-Dimensional Signal Processing

v1.8.2
BSD_3_clause + file LICENSE
Authors
Brandon Whitcher
Initial release
2020-02-13

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.