Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

hosking.sim

Generate Stationary Gaussian Process Using Hosking's Method


Description

Uses exact time-domain method from Hosking (1984) to generate a simulated time series from a specified autocovariance sequence.

Usage

hosking.sim(n, acvs)

Arguments

n

Length of series.

acvs

Autocovariance sequence of series with which to generate, must be of length at least n.

Value

Length n time series from true autocovariance sequence acvs.

Author(s)

Brandon Whitcher

References

Hosking, J. R. M. (1984) Modeling persistence in hydrological time series using fractional differencing, Water Resources Research, 20, No. 12, 1898-1908.

Percival, D. B. (1992) Simulating Gaussian random processes with specified spectra, Computing Science and Statistics, 22, 534-538.

Examples

dB <- function(x) 10 * log10(x)
per <- function (z) {
  n <- length(z)
  (Mod(fft(z))^2/(2 * pi * n))[1:(n%/%2 + 1)]
}
spp.sdf <- function(freq, delta, omega)
  abs(2 * (cos(2*pi*freq) - cos(2*pi*omega)))^(-2*delta)
data(acvs.andel8)
n <- 1024
## Not run: 
z <- hosking.sim(n, acvs.andel8[,2])
per.z <- 2 * pi * per(z)
par(mfrow=c(2,1), las=1)
plot.ts(z, ylab="", main="Realization of a Seasonal Long-Memory Process")
plot(0:(n/2)/n, dB(per.z), type="l", xlab="Frequency", ylab="dB",
     main="Periodogram")
lines(0:(n/2)/n, dB(spp.sdf(0:(n/2)/n, .4, 1/12)), col=2)

## End(Not run)

waveslim

Basic Wavelet Routines for One-, Two-, and Three-Dimensional Signal Processing

v1.8.2
BSD_3_clause + file LICENSE
Authors
Brandon Whitcher
Initial release
2020-02-13

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.