Squared Gain Function of a Filter
Produces the modulus squared of the Fourier transform for a given filtering sequence.
squared.gain(wf.name, filter.seq = "L", n = 512)
wf.name |
Character string of wavelet filter. |
filter.seq |
Character string of filter sequence. |
n |
Length of zero-padded filter. Frequency resolution will be
|
Uses cascade
subroutine to compute the squared gain function
from a given filtering sequence.
Squared gain function.
B. Whitcher
par(mfrow=c(2,2)) f.seq <- "H" plot(0:256/512, squared.gain("d4", f.seq), type="l", ylim=c(0,2), xlab="frequency", ylab="L = 4", main="Level 1") lines(0:256/512, squared.gain("fk4", f.seq), col=2) lines(0:256/512, squared.gain("mb4", f.seq), col=3) abline(v=c(1,2)/4, lty=2) legend(-.02, 2, c("Daubechies", "Fejer-Korovkin", "Minimum-Bandwidth"), lty=1, col=1:3, bty="n", cex=1) f.seq <- "HL" plot(0:256/512, squared.gain("d4", f.seq), type="l", ylim=c(0,4), xlab="frequency", ylab="", main="Level 2") lines(0:256/512, squared.gain("fk4", f.seq), col=2) lines(0:256/512, squared.gain("mb4", f.seq), col=3) abline(v=c(1,2)/8, lty=2) f.seq <- "H" plot(0:256/512, squared.gain("d8", f.seq), type="l", ylim=c(0,2), xlab="frequency", ylab="L = 8", main="") lines(0:256/512, squared.gain("fk8", f.seq), col=2) lines(0:256/512, squared.gain("mb8", f.seq), col=3) abline(v=c(1,2)/4, lty=2) f.seq <- "HL" plot(0:256/512, squared.gain("d8", f.seq), type="l", ylim=c(0,4), xlab="frequency", ylab="", main="") lines(0:256/512, squared.gain("fk8", f.seq), col=2) lines(0:256/512, squared.gain("mb8", f.seq), col=3) abline(v=c(1,2)/8, lty=2)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.