Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

xgb.DMatrix

Construct xgb.DMatrix object


Description

Construct xgb.DMatrix object from either a dense matrix, a sparse matrix, or a local file. Supported input file formats are either a libsvm text file or a binary file that was created previously by xgb.DMatrix.save).

Usage

xgb.DMatrix(data, info = list(), missing = NA, silent = FALSE, ...)

Arguments

data

a matrix object (either numeric or integer), a dgCMatrix object, or a character string representing a filename.

info

a named list of additional information to store in the xgb.DMatrix object. See setinfo for the specific allowed kinds of

missing

a float value to represents missing values in data (used only when input is a dense matrix). It is useful when a 0 or some other extreme value represents missing values in data.

silent

whether to suppress printing an informational message after loading from a file.

...

the info data could be passed directly as parameters, without creating an info list.

Examples

data(agaricus.train, package='xgboost')
train <- agaricus.train
dtrain <- xgb.DMatrix(train$data, label=train$label)
xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data')
dtrain <- xgb.DMatrix('xgb.DMatrix.data')
if (file.exists('xgb.DMatrix.data')) file.remove('xgb.DMatrix.data')

xgboost

Extreme Gradient Boosting

v1.4.1.1
Apache License (== 2.0) | file LICENSE
Authors
Tianqi Chen [aut], Tong He [aut, cre], Michael Benesty [aut], Vadim Khotilovich [aut], Yuan Tang [aut] (<https://orcid.org/0000-0001-5243-233X>), Hyunsu Cho [aut], Kailong Chen [aut], Rory Mitchell [aut], Ignacio Cano [aut], Tianyi Zhou [aut], Mu Li [aut], Junyuan Xie [aut], Min Lin [aut], Yifeng Geng [aut], Yutian Li [aut], XGBoost contributors [cph] (base XGBoost implementation)
Initial release
2021-04-22

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.