S3 Method for Computation of Marginal Posterior Distribution
Computes marginal posterior distributions for fitted models in the CDM package.
IRT.marginal_posterior(object, dim, remove_zeroprobs=TRUE, ...) ## S3 method for class 'din' IRT.marginal_posterior(object, dim, remove_zeroprobs=TRUE, ...) ## S3 method for class 'gdina' IRT.marginal_posterior(object, dim, remove_zeroprobs=TRUE, ...) ## S3 method for class 'mcdina' IRT.marginal_posterior(object, dim, remove_zeroprobs=TRUE, ...)
List with entries
| marg_post | Marginal posterior distribution | 
| map | MAP estimate (individual classification) | 
| theta | Skill classes | 
## Not run: 
#############################################################################
# EXAMPLE 1: Dataset with three hierarchical skills
#############################################################################
# simulated data with hierarchical skills:
# skill A with 4 levels, skill B with 2 levels and skill C with 3 levels
data(data.cdm10, package="CDM"")
dat <- data.cdm10$data
Q <- data.cdm10$q.matrix
print(Q)
# define hierarchical skill structure
B <- "A1 > A2 > A3
      C1 > C2"
skill_space <- CDM::skillspace.hierarchy(B=B, skill.names=colnames(Q))
zeroprob.skillclasses <- skill_space$zeroprob.skillclasses
# estimate DINA model
mod1 <- CDM::gdina( dat, q.matrix=Q, zeroprob.skillclasses=zeroprob.skillclasses, rule="DINA")
summary(mod1)
# classification for skill A
res <- CDM::IRT.marginal_posterior(object=mod1, dim=c("A1","A2","A3") )
table(res$map)
# classification for skill B
res <- CDM::IRT.marginal_posterior(object=mod1, dim=c("B") )
table(res$map)
# classification for skill C
res <- CDM::IRT.marginal_posterior(object=mod1, dim=c("C1","C2") )
table(res$map)
## End(Not run)Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.