S3 Method for Computation of Marginal Posterior Distribution
Computes marginal posterior distributions for fitted models in the CDM package.
IRT.marginal_posterior(object, dim, remove_zeroprobs=TRUE, ...) ## S3 method for class 'din' IRT.marginal_posterior(object, dim, remove_zeroprobs=TRUE, ...) ## S3 method for class 'gdina' IRT.marginal_posterior(object, dim, remove_zeroprobs=TRUE, ...) ## S3 method for class 'mcdina' IRT.marginal_posterior(object, dim, remove_zeroprobs=TRUE, ...)
List with entries
marg_post |
Marginal posterior distribution |
map |
MAP estimate (individual classification) |
theta |
Skill classes |
## Not run: ############################################################################# # EXAMPLE 1: Dataset with three hierarchical skills ############################################################################# # simulated data with hierarchical skills: # skill A with 4 levels, skill B with 2 levels and skill C with 3 levels data(data.cdm10, package="CDM"") dat <- data.cdm10$data Q <- data.cdm10$q.matrix print(Q) # define hierarchical skill structure B <- "A1 > A2 > A3 C1 > C2" skill_space <- CDM::skillspace.hierarchy(B=B, skill.names=colnames(Q)) zeroprob.skillclasses <- skill_space$zeroprob.skillclasses # estimate DINA model mod1 <- CDM::gdina( dat, q.matrix=Q, zeroprob.skillclasses=zeroprob.skillclasses, rule="DINA") summary(mod1) # classification for skill A res <- CDM::IRT.marginal_posterior(object=mod1, dim=c("A1","A2","A3") ) table(res$map) # classification for skill B res <- CDM::IRT.marginal_posterior(object=mod1, dim=c("B") ) table(res$map) # classification for skill C res <- CDM::IRT.marginal_posterior(object=mod1, dim=c("C1","C2") ) table(res$map) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.