Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

NormInf-class

The NormInf class.


Description

This class represents the infinity-norm.

Usage

## S4 method for signature 'NormInf'
name(x)

## S4 method for signature 'NormInf'
to_numeric(object, values)

## S4 method for signature 'NormInf'
allow_complex(object)

## S4 method for signature 'NormInf'
sign_from_args(object)

## S4 method for signature 'NormInf'
is_atom_convex(object)

## S4 method for signature 'NormInf'
is_atom_concave(object)

## S4 method for signature 'NormInf'
is_atom_log_log_convex(object)

## S4 method for signature 'NormInf'
is_atom_log_log_concave(object)

## S4 method for signature 'NormInf'
is_incr(object, idx)

## S4 method for signature 'NormInf'
is_decr(object, idx)

## S4 method for signature 'NormInf'
is_pwl(object)

## S4 method for signature 'NormInf'
get_data(object)

## S4 method for signature 'NormInf'
.domain(object)

## S4 method for signature 'NormInf'
.grad(object, values)

## S4 method for signature 'NormInf'
.column_grad(object, value)

Arguments

x, object

A NormInf object.

values

A list of numeric values for the arguments

idx

An index into the atom.

value

A numeric value

Methods (by generic)

  • name: The name and arguments of the atom.

  • to_numeric: Returns the infinity norm of x.

  • allow_complex: Does the atom handle complex numbers?

  • sign_from_args: The atom is always positive.

  • is_atom_convex: The atom is convex.

  • is_atom_concave: The atom is not concave.

  • is_atom_log_log_convex: Is the atom log-log convex?

  • is_atom_log_log_concave: Is the atom log-log concave?

  • is_incr: Is the composition weakly increasing in argument idx?

  • is_decr: Is the composition weakly decreasing in argument idx?

  • is_pwl: Is the atom piecewise linear?

  • get_data: Returns the axis.

  • .domain: Returns constraints describing the domain of the node

  • .grad: Gives the (sub/super)gradient of the atom w.r.t. each variable

  • .column_grad: Gives the (sub/super)gradient of the atom w.r.t. each column variable


CVXR

Disciplined Convex Optimization

v1.0-10
Apache License 2.0 | file LICENSE
Authors
Anqi Fu [aut, cre], Balasubramanian Narasimhan [aut], David W Kang [aut], Steven Diamond [aut], John Miller [aut], Stephen Boyd [ctb], Paul Kunsberg Rosenfield [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.