Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

MCpoissongamma

Monte Carlo Simulation from a Poisson Likelihood with a Gamma Prior


Description

This function generates a sample from the posterior distribution of a Poisson likelihood with a Gamma prior.

Usage

MCpoissongamma(y, alpha, beta, mc = 1000, ...)

Arguments

y

A vector of counts (must be non-negative).

alpha

Gamma prior distribution shape parameter.

beta

Gamma prior distribution scale parameter.

mc

The number of Monte Carlo draws to make.

...

further arguments to be passed

Details

MCpoissongamma directly simulates from the posterior distribution. This model is designed primarily for instructional use. λ is the parameter of interest of the Poisson distribution. We assume a conjugate Gamma prior:

λ \sim \mathcal{G}amma(α, β)

y is a vector of counts.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions provided by the coda package.

See Also

Examples

## Not run: 
data(quine)
posterior <- MCpoissongamma(quine$Days, 15, 1, 5000)
summary(posterior)
plot(posterior)
grid <- seq(14,18,0.01)
plot(grid, dgamma(grid, 15, 1), type="l", col="red", lwd=3, ylim=c(0,1.3),
  xlab="lambda", ylab="density")
lines(density(posterior), col="blue", lwd=3)
legend(17, 1.3, c("prior", "posterior"), lwd=3, col=c("red", "blue"))

## End(Not run)

MCMCpack

Markov Chain Monte Carlo (MCMC) Package

v1.5-0
GPL-3
Authors
Andrew D. Martin [aut], Kevin M. Quinn [aut], Jong Hee Park [aut,cre], Ghislain Vieilledent [ctb], Michael Malecki[ctb], Matthew Blackwell [ctb], Keith Poole [ctb], Craig Reed [ctb], Ben Goodrich [ctb], Ross Ihaka [cph], The R Development Core Team [cph], The R Foundation [cph], Pierre L'Ecuyer [cph], Makoto Matsumoto [cph], Takuji Nishimura [cph]
Initial release
2021-01-19

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.