The White Wishart Maximum Eigenvalue Distributions
Density, distribution function, quantile function, and random
generation for the maximum eigenvalue from a white Wishart matrix
(sample covariance matrix) with ndf
degrees of freedom,
pdim
dimensions, population variance var
, and order
parameter beta
.
dWishartMax(x, ndf, pdim, var=1, beta=1, log = FALSE) pWishartMax(q, ndf, pdim, var=1, beta=1, lower.tail = TRUE, log.p = FALSE) qWishartMax(p, ndf, pdim, var=1, beta=1, lower.tail = TRUE, log.p = FALSE) rWishartMax(n, ndf, pdim, var=1, beta=1)
x,q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
ndf |
the number of degrees of freedom for the Wishart matrix |
pdim |
the number of dimensions (variables) for the Wishart matrix |
var |
the population variance. |
beta |
the order parameter (1 or 2). |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. |
If beta
is not specified, it assumes the default value of 1
.
Likewise, var
assumes a default of 1
.
A white Wishart matrix is equal in distribution to (1/n) X' X ,
where X is an n\times p matrix with elements i.i.d. Normal
with mean zero and variance var
. These functions give the limiting
distribution of the largest eigenvalue from the such a matrix when
ndf
and pdim
both tend to infinity.
Supported values for beta
are 1
for real data and
and 2
for complex data.
dWishartMax
gives the density,
pWishartMax
gives the distribution function,
qWishartMax
gives the quantile function, and
rWishartMax
generates random deviates.
Iain M. Johnstone, Zongming Ma, Patrick O. Perry and Morteza Shahram
The functions are calculated by applying the appropriate centering and scaling (determined by WishartMaxPar), and then calling the corresponding functions for the TracyWidom distribution.
Johansson, K. (2000). Shape fluctuations and random matrices. Communications in Mathematical Physics. 209 437–476.
Johnstone, I.M. (2001). On the ditribution of the largest eigenvalue in principal component analysis. Annals of Statistics. 29 295–327.
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.