Covariance Model for binary field based on a Gaussian field
RMbernoulli
gives
the centered correlation function of a binary field,
obtained by thresholding a Gaussian field.
RMbernoulli(phi, threshold, correlation, centred, var, scale, Aniso, proj)
phi |
covariance function of class |
threshold |
real valued threshold, see
Default: 0. |
correlation |
logical. If Default: |
centred |
logical. If Default: |
var,scale,Aniso,proj |
optional arguments; same meaning for any
|
This model yields the covariance function of the field
that is returned by RPbernoulli
.
RMbernoulli
returns an object of class RMmodel
.
Previous to version 3.0.33 the covariance function was returned, not the correlation function.
Martin Schlather, schlather@math.uni-mannheim.de, https://www.wim.uni-mannheim.de/schlather/
Ballani, Schlather
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set ## RFoptions(seed=NA) to make them all random again threshold <- 0 x <- seq(0, 5, 0.02) GaussModel <- RMgneiting() n <- 1000 z <- RFsimulate(RPbernoulli(GaussModel, threshold=threshold), x=x, n=n) plot(z) model <- RMbernoulli(RMgauss(), threshold=threshold, correlation=FALSE) plot(model, xlim=c(0,5)) z1 <- as.matrix(z) estim.cov <- apply(z1, 1, function(x) cov(x, z1[1,])) points(coordinates(z), estim.cov, col="red")
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.