Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

RMgenfbm

Generalized Fractal Brownian Motion Variogram Model


Description

RMgenfbm is an intrinsically stationary isotropic variogram model. The corresponding centered semi-variogram only depends on the distance r ≥ 0 between two points and is given by

γ(r)=(r^{α}+1)^{β/α}-1

where 0 < α ≤ 2 and β \in (0,2].
See also RMfbm.

Usage

RMgenfbm(alpha, beta, var, scale, Aniso, proj)

Arguments

alpha

a numerical value; should be in the interval (0,2].

beta

a numerical value; should be in the interval (0,2].

var,scale,Aniso,proj

optional arguments; same meaning for any RMmodel. If not passed, the above variogram remains unmodified.

Details

Here, the variogram of RMfbm is modified by the transformation (γ+1)^{δ/-1} on variograms γ for δ \in (0,1]. This original modification allows for further generalization, cf. RMbcw.

Value

RMgenfbm returns an object of class RMmodel.

Author(s)

References

  • Gneiting, T. (2002) Nonseparable, stationary covariance functions for space-time data, JASA 97, 590-600.

  • Schlather, M. (2010) On some covariance models based on normal scale mixtures. Bernoulli, 16, 780-797.

See Also

Examples

RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again

model <- RMgenfbm(alpha=1, beta=0.5)
x <- seq(0, 10, 0.02)
plot(model)
plot(RFsimulate(model, x=x))

RandomFields

Simulation and Analysis of Random Fields

v3.3.10
GPL (>= 3)
Authors
Martin Schlather [aut, cre], Alexander Malinowski [aut], Marco Oesting [aut], Daphne Boecker [aut], Kirstin Strokorb [aut], Sebastian Engelke [aut], Johannes Martini [aut], Felix Ballani [aut], Olga Moreva [aut], Jonas Auel[ctr], Peter Menck [ctr], Sebastian Gross [ctr], Ulrike Ober [ctb], Paulo Ribeiro [ctb], Brian D. Ripley [ctb], Richard Singleton [ctb], Ben Pfaff [ctb], R Core Team [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.