Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

RRrectangular

Random scaling used with balls


Description

Approximates an isotropic decreasing density function by a density function that is isotropic with respect to the l_1 norm.

Usage

RRrectangular(phi, safety, minsteplen, maxsteps, parts, maxit,
             innermin, outermax, mcmc_n, normed, approx, onesided)

Arguments

phi

a shape function; it is the user's responsibility that it is non-negative. See Details.

safety, minsteplen, maxsteps, parts, maxit, innermin, outermax, mcmc_n

Technical arguments to run an algorithm to simulate from this distribution. See RFoptions for the default values.

normed

logical. If FALSE then the norming constant c in the Details is set to 1. This affects the values of the density function, the probability distribution and the quantile function, but not the simulation of random variables.

approx

logical. Default is TRUE. If TRUE the isotropic distribution with respect to the l_1 norm is returned. If FALSE then the exact isotropic distribution with respect to the l_2 norm is simulated. Neither the density function, nor the probability distribution, nor the quantile function will be available if approx=TRUE.

onesided

logical. Only used for univariate distributions. If TRUE then the density is assumed to be non-negative only on the positive real axis. Otherwise the density is assumed to be symmetric.

Details

This model defines an isotropic density function $f$ with respect to the l_1 norm, i.e. f(x) = c φ(\|x\|_{l_1}) with some function φ. Here, c is a norming constant so that the integral of f equals one.

In case that φ is monotonically decreasing then rejection sampling is used, else MCMC.

The function φ might have a polynomial pole at the origin and asymptotical decreasing of the form x^β exp(-x^δ).

Value

RRrectangular returns an object of class RMmodel.

Author(s)

See Also

Examples

RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again
# simulation of Gaussian variables (in a not very straightforward way):
distr <- RRrectangular(RMgauss(), approx=FALSE)
z <- RFrdistr(distr, n=1000000)
hist(z, 200, freq=!TRUE)
x <- seq(-10, 10, 0.1)
lines(x, dnorm(x, sd=sqrt(0.5)))


#creation of random variables whose density is proportional
# to the spherical model:
distr <- RRrectangular(RMspheric(), approx=FALSE)
z <- RFrdistr(distr, n=1000000)
hist(z, 200, freq=!TRUE)

x <- seq(-10, 10, 0.01)
lines(x, 4/3 * RFcov(RMspheric(), x))

RandomFields

Simulation and Analysis of Random Fields

v3.3.10
GPL (>= 3)
Authors
Martin Schlather [aut, cre], Alexander Malinowski [aut], Marco Oesting [aut], Daphne Boecker [aut], Kirstin Strokorb [aut], Sebastian Engelke [aut], Johannes Martini [aut], Felix Ballani [aut], Olga Moreva [aut], Jonas Auel[ctr], Peter Menck [ctr], Sebastian Gross [ctr], Ulrike Ober [ctb], Paulo Ribeiro [ctb], Brian D. Ripley [ctb], Richard Singleton [ctb], Ben Pfaff [ctb], R Core Team [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.