Setup Pred function based on RxODE object.
This is for the so-called inner problem.
rxSEinner( obj, predfn, pkpars = NULL, errfn = NULL, init = NULL, grad = FALSE, sum.prod = FALSE, pred.minus.dv = TRUE, only.numeric = FALSE, optExpression = TRUE, interaction = TRUE, ..., promoteLinSens = TRUE, theta = FALSE, addProp = c("combined2", "combined1") ) rxSymPySetupPred( obj, predfn, pkpars = NULL, errfn = NULL, init = NULL, grad = FALSE, sum.prod = FALSE, pred.minus.dv = TRUE, only.numeric = FALSE, optExpression = TRUE, interaction = TRUE, ..., promoteLinSens = TRUE, theta = FALSE, addProp = c("combined2", "combined1") )
obj |
RxODE object |
predfn |
Prediction function |
pkpars |
Pk Pars function |
errfn |
Error function |
init |
Initialization parameters for scaling. |
grad |
Boolaen indicated if the the equations for the gradient be calculated |
sum.prod |
A boolean determining if RxODE should use more numerically stable sums/products. |
pred.minus.dv |
Boolean stating if the FOCEi objective function is based on PRED-DV (like NONMEM). Default TRUE. |
only.numeric |
Instead of setting up the sensitivities for the inner problem, modify the RxODE to use numeric differentiation for the numeric inner problem only. |
optExpression |
Optimize the model text for computer evaluation. |
interaction |
Boolean to determine if dR^2/deta is calculated for FOCEi (not needed for FOCE) |
promoteLinSens |
Promote solved linear compartment systems to sensitivity-based solutions. |
theta |
Calculate THETA derivatives instead of ETA derivatives. By default FALSE |
addProp |
one of "combined1" and "combined2"; These are the two forms of additive+proportional errors supported by monolix/nonmem: combined1: transform(y)=transform(f)+(a+b*f^c)*eps combined2: transform(y)=transform(f)+(a^2+b^2*f^(2c))*eps |
RxODE object expanded with predfn and with calculated sensitivities.
Matthew L. Fidler
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.