SummarizedExperiment objects
The SummarizedExperiment class is a matrix-like container where rows represent features of interest (e.g. genes, transcripts, exons, etc...) and columns represent samples (with sample data summarized as a DataFrame). A SummarizedExperiment object contains one or more assays, each represented by a matrix-like object of numeric or other mode.
Note that SummarizedExperiment is the parent of the RangedSummarizedExperiment class which means that all the methods documented below also work on a RangedSummarizedExperiment object.
## Constructor # See ?RangedSummarizedExperiment for the constructor function. ## Accessors assayNames(x, ...) assayNames(x, ...) <- value assays(x, withDimnames=TRUE, ...) assays(x, withDimnames=TRUE, ...) <- value assay(x, i, withDimnames=TRUE, ...) assay(x, i, withDimnames=TRUE, ...) <- value rowData(x, use.names=TRUE, ...) rowData(x, ...) <- value colData(x, ...) colData(x, ...) <- value #dim(x) #dimnames(x) #dimnames(x) <- value ## Quick colData access ## S4 method for signature 'SummarizedExperiment' x$name ## S4 replacement method for signature 'SummarizedExperiment' x$name <- value ## S4 method for signature 'SummarizedExperiment,ANY,missing' x[[i, j, ...]] ## S4 replacement method for signature 'SummarizedExperiment,ANY,missing' x[[i, j, ...]] <- value ## Subsetting ## S4 method for signature 'SummarizedExperiment' x[i, j, ..., drop=TRUE] ## S4 replacement method for signature 'SummarizedExperiment,ANY,ANY,SummarizedExperiment' x[i, j] <- value ## S4 method for signature 'SummarizedExperiment' subset(x, subset, select, ...) ## Combining ## S4 method for signature 'SummarizedExperiment' cbind(..., deparse.level=1) ## S4 method for signature 'SummarizedExperiment' rbind(..., deparse.level=1) ## On-disk realization ## S4 method for signature 'SummarizedExperiment' realize(x, BACKEND=getAutoRealizationBackend())
x |
A SummarizedExperiment object. |
... |
For For For other accessors, ignored. |
value |
An object of a class specified in the S4 method signature or as outlined in ‘Details’. |
i, j |
For For For |
name |
A symbol representing the name of a column of
|
withDimnames |
A Setting Note that assays(x, withDimnames=FALSE) <- assays(x, withDimnames=FALSE) is guaranteed to always work and be a no-op. This is not the case
if |
use.names |
Like |
drop |
A |
deparse.level |
See |
subset |
An expression which, when evaluated in the
context of |
select |
An expression which, when evaluated in the
context of |
BACKEND |
|
The SummarizedExperiment class is meant for numeric and other
data types derived from a sequencing experiment. The structure is
rectangular like a matrix
, but with additional annotations on
the rows and columns, and with the possibility to manage several
assays simultaneously.
The rows of a SummarizedExperiment object represent features
of interest. Information about these features is stored in a
DataFrame object, accessible using the function
rowData
. The DataFrame must have as many rows
as there are rows in the SummarizedExperiment object, with each row
of the DataFrame providing information on the feature in the
corresponding row of the SummarizedExperiment object. Columns of the
DataFrame represent different attributes of the features
of interest, e.g., gene or transcript IDs, etc.
Each column of a SummarizedExperiment object represents a sample.
Information about the samples are stored in a DataFrame,
accessible using the function colData
, described below.
The DataFrame must have as many rows as there are
columns in the SummarizedExperiment object, with each row of the
DataFrame providing information on the sample in the
corresponding column of the SummarizedExperiment object.
Columns of the DataFrame represent different sample
attributes, e.g., tissue of origin, etc. Columns of the
DataFrame can themselves be annotated (via the
mcols
function). Column names typically
provide a short identifier unique to each sample.
A SummarizedExperiment object can also contain information about
the overall experiment, for instance the lab in which it was conducted,
the publications with which it is associated, etc. This information is
stored as a list
object, accessible using the metadata
function. The form of the data associated with the experiment is left to
the discretion of the user.
The SummarizedExperiment container is appropriate for matrix-like
data. The data are accessed using the assays
function,
described below. This returns a SimpleList object. Each
element of the list must itself be a matrix (of any mode) and must
have dimensions that are the same as the dimensions of the
SummarizedExperiment in which they are stored. Row and column
names of each matrix must either be NULL
or match those of the
SummarizedExperiment during construction. It is convenient for
the elements of SimpleList of assays to be named.
SummarizedExperiment instances are constructed using the
SummarizedExperiment
function documented in
?RangedSummarizedExperiment
.
In the following code snippets, x
is a SummarizedExperiment
object.
assays(x)
, assays(x) <- value
:Get or set the
assays. value
is a list
or SimpleList
, each
element of which is a matrix with the same dimensions as
x
.
assay(x, i)
, assay(x, i) <- value
:A convenient
alternative (to assays(x)[[i]]
, assays(x)[[i]] <-
value
) to get or set the i
th (default first) assay
element. value
must be a matrix of the same dimension as
x
, and with dimension names NULL
or consistent with
those of x
.
assayNames(x)
, assayNames(x) <- value
:Get or
set the names of assay()
elements.
rowData(x, use.names=TRUE)
, rowData(x) <- value
:Get or set the row data. value
is a DataFrame object.
colData(x)
, colData(x) <- value
:Get or set the
column data. value
is a DataFrame object. Row
names of value
must be NULL or consistent with the existing
column names of x
.
metadata(x)
, metadata(x) <- value
:Get or set
the experiment data. value
is a list
with arbitrary
content.
dim(x)
:Get the dimensions (features of interest x samples) of the SummarizedExperiment.
dimnames(x)
, dimnames(x) <- value
:Get or set
the dimension names. value
is usually a list of length 2,
containing elements that are either NULL
or vectors of
appropriate length for the corresponding dimension. value
can be NULL
, which removes dimension names. This method
implies that rownames
, rownames<-
, colnames
,
and colnames<-
are all available.
In the code snippets below, x
is a SummarizedExperiment object.
x[i,j]
, x[i,j] <- value
:Create or replace a
subset of x
. i
, j
can be numeric
,
logical
, character
, or missing
. value
must be a SummarizedExperiment object with dimensions,
dimension names, and assay elements consistent with the subset
x[i,j]
being replaced.
subset(x, subset, select)
:Create a subset of x
using an expression subset
referring to columns of
rowData(x)
and / or select
referring to column names
of colData(x)
.
Additional subsetting accessors provide convenient access to
colData
columns
x$name
, x$name <- value
Access or replace
column name
in x
.
x[[i, ...]]
, x[[i, ...]] <- value
Access or
replace column i
in x
.
In the code snippets below, ...
are SummarizedExperiment objects
to be combined.
cbind(...)
:cbind
combines objects with the same features of interest
but different samples (columns in assays
).
The colnames in colData(SummarizedExperiment)
must match or
an error is thrown.
Duplicate columns of rowData(SummarizedExperiment)
must
contain the same data.
Data in assays
are combined by name matching; if all assay
names are NULL matching is by position. A mixture of names and NULL
throws an error.
metadata
from all objects are combined into a list
with no name checking.
rbind(...)
:rbind
combines objects with the same samples
but different features of interest (rows in assays
).
The colnames in rowData(SummarizedExperiment)
must match or
an error is thrown.
Duplicate columns of colData(SummarizedExperiment)
must
contain the same data.
Data in assays
are combined by name matching; if all assay
names are NULL matching is by position. A mixture of names and NULL
throws an error.
metadata
from all objects are combined into a list
with no name checking.
This section contains advanced material meant for package developers.
SummarizedExperiment is implemented as an S4 class, and can be extended in
the usual way, using contains="SummarizedExperiment"
in the new
class definition.
In addition, the representation of the assays
slot of
SummarizedExperiment is as a virtual class Assays. This
allows derived classes (contains="Assays"
) to implement
alternative requirements for the assays, e.g., backed by file-based
storage like NetCDF or the ff
package, while re-using the existing
SummarizedExperiment class without modification.
See Assays for more information.
Martin Morgan, mtmorgan@fhcrc.org
RangedSummarizedExperiment objects.
DataFrame, SimpleList, and Annotated objects in the S4Vectors package.
saveHDF5SummarizedExperiment
and
loadHDF5SummarizedExperiment
in the
HDF5Array package for saving/loading an HDF5-based
SummarizedExperiment object to/from disk.
The realize
generic function in the
DelayedArray package for more information about on-disk
realization of objects carrying delayed operations.
nrows <- 200; ncols <- 6 counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows) colData <- DataFrame(Treatment=rep(c("ChIP", "Input"), 3), row.names=LETTERS[1:6]) se0 <- SummarizedExperiment(assays=SimpleList(counts=counts), colData=colData) se0 dim(se0) dimnames(se0) assayNames(se0) head(assay(se0)) assays(se0) <- endoapply(assays(se0), asinh) head(assay(se0)) rowData(se0) colData(se0) se0[, se0$Treatment == "ChIP"] subset(se0, select = Treatment == "ChIP") ## cbind() combines objects with the same features of interest ## but different samples: se1 <- se0 se2 <- se1[,1:3] colnames(se2) <- letters[seq_len(ncol(se2))] cmb1 <- cbind(se1, se2) dim(cmb1) dimnames(cmb1) ## rbind() combines objects with the same samples but different ## features of interest: se1 <- se0 se2 <- se1[1:50,] rownames(se2) <- letters[seq_len(nrow(se2))] cmb2 <- rbind(se1, se2) dim(cmb2) dimnames(cmb2) ## --------------------------------------------------------------------- ## ON-DISK REALIZATION ## --------------------------------------------------------------------- library(DelayedArray) setAutoRealizationBackend("HDF5Array") cmb3 <- realize(cmb2) assay(cmb3, withDimnames=FALSE) # an HDF5Matrix object
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.