Thurstonian Thresholds and Wright Map for Item Response Models
The function IRT.threshold
computes Thurstonian thresholds
for item response models. It is only based on fitted models
for which the IRT.irfprob
does exist.
The function IRT.WrightMap
creates a Wright map and works as a wrapper to the
WrightMap::wrightMap
function in
the WrightMap package. Wright maps operate
on objects of class IRT.threshold
.
IRT.threshold(object, prob.lvl=.5, type="category") ## S3 method for class 'IRT.threshold' print(x, ...) IRT.WrightMap(object, ...) ## S3 method for class 'IRT.threshold' IRT.WrightMap(object, label.items=NULL, ...)
object |
Object of fitted models for which |
prob.lvl |
Requested probability level of thresholds. |
type |
Type of thresholds to be calculated. The default is
category-wise calculation. If only one threshold per item should
be calculated, then choose |
x |
Object of class |
label.items |
Vector of item labels |
... |
Further arguments to be passed. |
Function IRT.threshold
:
Matrix with Thurstonian thresholds
Function IRT.WrightMap
:
A Wright map generated by the WrightMap package.
The IRT.WrightMap
function is based on the
WrightMap::wrightMap
function
in the WrightMap package.
Ali, U. S., Chang, H.-H., & Anderson, C. J. (2015). Location indices for ordinal polytomous items based on item response theory (Research Report No. RR-15-20). Princeton, NJ: Educational Testing Service. doi: 10.1002/ets2.12065
See the WrightMap::wrightMap
function in
the WrightMap package.
## Not run: ############################################################################# # EXAMPLE 1: Fitted unidimensional model with gdm ############################################################################# data(data.Students) dat <- data.Students # select part of the dataset resp <- dat[, paste0("sc",1:4) ] resp[ paste(resp[,1])==3,1] <- 2 psych::describe(resp) # Model 1: Partial credit model in gdm theta.k <- seq( -5, 5, len=21 ) # discretized ability mod1 <- CDM::gdm( dat=resp, irtmodel="1PL", theta.k=theta.k, skillspace="normal", centered.latent=TRUE) # compute thresholds thresh1 <- TAM::IRT.threshold(mod1) print(thresh1) IRT.WrightMap(thresh1) ############################################################################# # EXAMPLE 2: Fitted mutidimensional model with gdm ############################################################################# data( data.fraction2 ) dat <- data.fraction2$data Qmatrix <- data.fraction2$q.matrix3 # Model 1: 3-dimensional Rasch Model (normal distribution) theta.k <- seq( -4, 4, len=11 ) # discretized ability mod1 <- CDM::gdm( dat, irtmodel="1PL", theta.k=theta.k, Qmatrix=Qmatrix, centered.latent=TRUE, maxiter=10 ) summary(mod1) # compute thresholds thresh1 <- TAM::IRT.threshold(mod1) print(thresh1) ############################################################################# # EXAMPLE 3: Item-wise thresholds ############################################################################# data(data.timssAusTwn.scored) dat <- data.timssAusTwn.scored dat <- dat[, grep("M03", colnames(dat) ) ] summary(dat) # fit partial credit model mod <- TAM::tam.mml( dat ) # compute thresholds with tam.threshold function t1mod <- TAM::tam.threshold( mod ) t1mod # compute thresholds with IRT.threshold function t2mod <- TAM::IRT.threshold( mod ) t2mod # compute item-wise thresholds t3mod <- TAM::IRT.threshold( mod, type="item") t3mod ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.