Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

inv.paralogistic

Inverse Paralogistic Distribution Family Function


Description

Maximum likelihood estimation of the 2-parameter inverse paralogistic distribution.

Usage

inv.paralogistic(lscale = "loglink", lshape1.a = "loglink", iscale = NULL,
    ishape1.a = NULL, imethod = 1, lss = TRUE, gscale = exp(-5:5),
    gshape1.a = seq(0.75, 4, by = 0.25), probs.y = c(0.25, 0.5, 0.75),
    zero = "shape")

Arguments

lss

See CommonVGAMffArguments for important information.

lshape1.a, lscale

Parameter link functions applied to the (positive) parameters a and scale. See Links for more choices.

iscale, ishape1.a, imethod, zero

See CommonVGAMffArguments for information. For imethod = 2 a good initial value for ishape1.a is needed to obtain a good estimate for the other parameter.

gscale, gshape1.a

See CommonVGAMffArguments for information.

probs.y

See CommonVGAMffArguments for information.

Details

The 2-parameter inverse paralogistic distribution is the 4-parameter generalized beta II distribution with shape parameter q=1 and a=p. It is the 3-parameter Dagum distribution with a=p. More details can be found in Kleiber and Kotz (2003).

The inverse paralogistic distribution has density

f(y) = a^2 y^(a^2-1) / [b^(a^2) (1 + (y/b)^a)^(a+1)]

for a > 0, b > 0, y >= 0. Here, b is the scale parameter scale, and a is the shape parameter. The mean is

E(Y) = b gamma(a + 1/a) gamma(1 - 1/a) / gamma(a)

provided a > 1; these are returned as the fitted values. This family function handles multiple responses.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such as vglm, and vgam.

Note

See the notes in genbetaII.

Author(s)

T. W. Yee

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.

See Also

Examples

idata <- data.frame(y = rinv.paralogistic(n = 3000, exp(1), scale = exp(2)))
fit <- vglm(y ~ 1, inv.paralogistic(lss = FALSE), data = idata, trace = TRUE)
fit <- vglm(y ~ 1, inv.paralogistic(imethod = 2, ishape1.a = 4),
            data = idata, trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)

VGAM

Vector Generalized Linear and Additive Models

v1.1-5
GPL-3
Authors
Thomas Yee [aut, cre], Cleve Moler [ctb] (author of several LINPACK routines)
Initial release
2021-01-13

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.