The Inverse Paralogistic Distribution
Density, distribution function, quantile function and random
generation for the inverse paralogistic distribution with
shape parameters a
and p
, and scale parameter scale
.
dinv.paralogistic(x, scale = 1, shape1.a, log = FALSE) pinv.paralogistic(q, scale = 1, shape1.a, lower.tail = TRUE, log.p = FALSE) qinv.paralogistic(p, scale = 1, shape1.a, lower.tail = TRUE, log.p = FALSE) rinv.paralogistic(n, scale = 1, shape1.a)
x, q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
shape1.a |
shape parameter. |
scale |
scale parameter. |
log |
Logical.
If |
lower.tail, log.p |
See inv.paralogistic
, which is the VGAM family function
for estimating the parameters by maximum likelihood estimation.
dinv.paralogistic
gives the density,
pinv.paralogistic
gives the distribution function,
qinv.paralogistic
gives the quantile function, and
rinv.paralogistic
generates random deviates.
The inverse paralogistic distribution is a special case of the 4-parameter generalized beta II distribution.
T. W. Yee
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
idata <- data.frame(y = rinv.paralogistic(n = 3000, exp(1), scale = exp(2))) fit <- vglm(y ~ 1, inv.paralogistic(lss = FALSE, ishape1.a = 2.1), data = idata, trace = TRUE, crit = "coef") coef(fit, matrix = TRUE) Coef(fit)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.