Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

poissonff

Poisson Regression


Description

Family function for a generalized linear model fitted to Poisson responses.

Usage

poissonff(link = "loglink", imu = NULL,
          imethod = 1, parallel = FALSE, zero = NULL, bred = FALSE,
          earg.link = FALSE, type.fitted = c("mean", "quantiles"),
                       percentiles = c(25, 50, 75))

Arguments

link

Link function applied to the mean or means. See Links for more choices and information.

parallel

A logical or formula. Used only if the response is a matrix.

imu, imethod

See CommonVGAMffArguments for more information.

zero

Can be an integer-valued vector specifying which linear/additive predictors are modelled as intercepts only. The values must be from the set {1,2,...,M}, where M is the number of columns of the matrix response. See CommonVGAMffArguments for more information.

bred, earg.link

Details at CommonVGAMffArguments. Setting bred = TRUE should work for multiple responses and all VGAM link functions; it has been tested for loglink, identity but further testing is required.

type.fitted, percentiles

Details at CommonVGAMffArguments.

Details

M defined above is the number of linear/additive predictors. With overdispersed data try negbinomial.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such as vglm, vgam, rrvglm, cqo, and cao.

Warning

With multiple responses, assigning a known dispersion parameter for each response is not handled well yet. Currently, only a single known dispersion parameter is handled well.

Note

This function will handle a matrix response automatically.

Regardless of whether the dispersion parameter is to be estimated or not, its value can be seen from the output from the summary() of the object.

Author(s)

Thomas W. Yee

References

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman & Hall.

See Also

Examples

poissonff()

set.seed(123)
pdata <- data.frame(x2 = rnorm(nn <- 100))
pdata <- transform(pdata, y1 = rpois(nn, exp(1 + x2)),
                          y2 = rpois(nn, exp(1 + x2)))
(fit1 <- vglm(cbind(y1, y2) ~ x2, poissonff, data = pdata))
(fit2 <- vglm(y1 ~ x2, poissonff(bred = TRUE), data = pdata))
coef(fit1, matrix = TRUE)
coef(fit2, matrix = TRUE)

nn <- 200
cdata <- data.frame(x2 = rnorm(nn), x3 = rnorm(nn), x4 = rnorm(nn))
cdata <- transform(cdata, lv1 = 0 + x3 - 2*x4)
cdata <- transform(cdata, lambda1 = exp(3 - 0.5 *  (lv1-0)^2),
                          lambda2 = exp(2 - 0.5 *  (lv1-1)^2),
                          lambda3 = exp(2 - 0.5 * ((lv1+4)/2)^2))
cdata <- transform(cdata, y1 = rpois(nn, lambda1),
                          y2 = rpois(nn, lambda2),
                          y3 = rpois(nn, lambda3))
## Not run:  lvplot(p1, y = TRUE, lcol = 2:4, pch = 2:4, pcol = 2:4, rug = FALSE)

VGAM

Vector Generalized Linear and Additive Models

v1.1-5
GPL-3
Authors
Thomas Yee [aut, cre], Cleve Moler [ctb] (author of several LINPACK routines)
Initial release
2021-01-13

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.