Fast matching/imputation based on categorical variable
Suitable donors are searched based on matching of the categorical variables. The variables are dropped in reversed order, so that the last element of 'match_var' is dropped first and the first element of the vector is dropped last.
matchImpute( data, variable = colnames(data)[!colnames(data) %in% match_var], match_var, imp_var = TRUE, imp_suffix = "imp" )
data |
data.frame, data.table or matrix |
variable |
variables to be imputed |
match_var |
variables used for matching |
imp_var |
TRUE/FALSE if a TRUE/FALSE variables for each imputed variable should be created show the imputation status |
imp_suffix |
suffix for the TRUE/FALSE variables showing the imputation status |
The method works by sampling values from the suitable donors.
the imputed data set.
Johannes Gussenbauer, Alexander Kowarik
Other imputation methods:
hotdeck()
,
irmi()
,
kNN()
,
rangerImpute()
,
regressionImp()
data(sleep,package="VIM") imp_data <- matchImpute(sleep,variable=c("NonD","Dream","Sleep","Span","Gest"), match_var=c("Exp","Danger")) data(testdata,package="VIM") imp_testdata1 <- matchImpute(testdata$wna,match_var=c("c1","c2","b1","b2")) dt <- data.table::data.table(testdata$wna) imp_testdata2 <- matchImpute(dt,match_var=c("c1","c2","b1","b2"))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.