Computes Moran's index for a variable
This simple function computes Moran's index of autocorrelation given a variable and a matrix of proximities among observations.
moran.idx(x, prox, addInfo = FALSE)
x |
a numeric vector whose autocorrelation is computed. |
prox |
a matrix of proximities between observations, as computed by the
|
addInfo |
a logical indicating whether supplementary info (null value, minimum and maximum values) should be returned (TRUE) or not (FALSE, default); if computed, these quantities are returned as attributes. |
The numeric value of Moran's index.
Thibaut Jombart tjombart@imperial.ac.uk
Moran, P.A.P. (1948) The interpretation of statistical maps. Journal of the Royal Statistical Society, B 10, 243–251.
Moran, P.A.P. (1950) Notes on continuous stochastic phenomena. Biometrika, 37, 17–23.
de Jong, P. and Sprenger, C. and van Veen, F. (1984) On extreme values of Moran's I and Geary's c. Geographical Analysis, 16, 17–24.
proxTips
which computes phylogenetic proximities
between tips of a phylogeny.
## Not run: ## use maples dataset data(maples) tre <- read.tree(text=maples$tre) dom <- maples$tab$Dom bif <- maples$tab$Bif ## get a proximity matrix between tips W <- proxTips(tre, met="Abouheif") ## compute Moran's I for two traits (dom and bif) moran.idx(dom, W) moran.idx(bif, W) moran.idx(rnorm(nTips(tre)), W) ## build a simple permutation test for 'bif' sim <- replicate(499, moran.idx(sample(bif), W)) # permutations sim <- c(moran.idx(bif, W), sim) pval <- mean(sim>=sim[1]) # right-tail p-value pval hist(sim, col="grey", main="Moran's I Monte Carlo test for 'bif'") # plot mtext("Histogram of permutations and observation (in red)") abline(v=sim[1], col="red", lwd=3) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.