Compute a matrix of terms contributions
Used for model_get_n()
. For each row and term, equal 1 if this row should
be taken into account in the estimate of the number of observations,
0 otherwise.
model_compute_terms_contributions(model) ## Default S3 method: model_compute_terms_contributions(model)
model |
a model object |
This function does not cover lavaan
models (NULL
is returned).
Other model_helpers:
model_get_assign()
,
model_get_coefficients_type()
,
model_get_contrasts()
,
model_get_model_frame()
,
model_get_model_matrix()
,
model_get_model()
,
model_get_nlevels()
,
model_get_n()
,
model_get_offset()
,
model_get_response()
,
model_get_terms()
,
model_get_weights()
,
model_get_xlevels()
,
model_identify_variables()
,
model_list_contrasts()
,
model_list_terms_levels()
,
model_list_variables()
mod <- lm(Sepal.Length ~ Sepal.Width, iris) mod %>% model_compute_terms_contributions() mod <- lm(hp ~ mpg + factor(cyl) + disp:hp, mtcars) mod %>% model_compute_terms_contributions() mod <- glm( response ~ stage * grade + trt, gtsummary::trial, family = binomial, contrasts = list( stage = contr.sum, grade = contr.treatment(3, 2), trt = "contr.SAS" ) ) mod %>% model_compute_terms_contributions() mod <- glm( response ~ stage * trt, gtsummary::trial, family = binomial, contrasts = list(stage = contr.poly) ) mod %>% model_compute_terms_contributions() mod <- glm( Survived ~ Class * Age + Sex, data = Titanic %>% as.data.frame(), weights = Freq, family = binomial ) mod %>% model_compute_terms_contributions() d <- dplyr::as_tibble(Titanic) %>% dplyr::group_by(Class, Sex, Age) %>% dplyr::summarise( n_survived = sum(n * (Survived == "Yes")), n_dead = sum(n * (Survived == "No")) ) mod <- glm(cbind(n_survived, n_dead) ~ Class * Age + Sex, data = d, family = binomial) mod %>% model_compute_terms_contributions()
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.