List levels of categorical terms
Only for categorical variables with treatment, SAS or sum contrasts, and categorical variables with no contrast.
model_list_terms_levels( model, label_pattern = "{level}", variable_labels = NULL ) ## Default S3 method: model_list_terms_levels( model, label_pattern = "{level}", variable_labels = NULL )
model |
a model object |
label_pattern |
a glue pattern for term labels (see examples) |
variable_labels |
an optional named list or named vector of
custom variable labels passed to |
A tibble with ten columns:
variable
: variable
contrasts_type
: type of contrasts ("sum" or "treatment")
term
: term name
level
: term level
level_rank
: rank of the level
reference
: logical indicating which term is the reference level
reference_level
: level of the reference term
var_label
: variable label obtained with model_list_variables()
var_nlevels
: number of levels in this variable
dichotomous
: logical indicating if the variable is dichotomous
label
: term label (by default equal to term level)
The first nine columns can be used in label_pattern
.
Other model_helpers:
model_compute_terms_contributions()
,
model_get_assign()
,
model_get_coefficients_type()
,
model_get_contrasts()
,
model_get_model_frame()
,
model_get_model_matrix()
,
model_get_model()
,
model_get_nlevels()
,
model_get_n()
,
model_get_offset()
,
model_get_response()
,
model_get_terms()
,
model_get_weights()
,
model_get_xlevels()
,
model_identify_variables()
,
model_list_contrasts()
,
model_list_variables()
glm( am ~ mpg + factor(cyl), data = mtcars, family = binomial, contrasts = list(`factor(cyl)` = contr.sum) ) %>% model_list_terms_levels() df <- Titanic %>% dplyr::as_tibble() %>% dplyr::mutate(Survived = factor(Survived, c("No", "Yes"))) mod <- df %>% glm( Survived ~ Class + Age + Sex, data = ., weights = .$n, family = binomial, contrasts = list(Age = contr.sum, Class = "contr.helmert") ) mod %>% model_list_terms_levels() mod %>% model_list_terms_levels("{level} vs {reference_level}") mod %>% model_list_terms_levels("{variable} [{level} - {reference_level}]") mod %>% model_list_terms_levels( "{ifelse(reference, level, paste(level, '-', reference_level))}" )
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.