Kendall Distribution Function for Archimedean Copulas
The Kendall distribution of an Archimedean copula is defined by
K(u) = P(C(U[1], U[2], …, U[d]) <= u),
where u in [0,1], and the d-dimensional (U[1],U[2],…,U[d]) is distributed according to the copula C. Note that the random variable C(U[1],U[2], …, U[d]) is known as “probability integral transform”. Its distribution function K is equal to the identity if d = 1, but is non-trivial for d >= 2.
Kn()
computes the empirical Kendall distribution function,
pK()
the distribution function (so K() itself),
qK()
the quantile function, dK()
the density, and
rK()
random number generation from K() for an Archimedean
copula.
Kn(u, x, method = c("GR", "GNZ")) # empirical Kendall distribution function dK(u, copula, d, n.MC = 0, log.p = FALSE) # density pK(u, copula, d, n.MC = 0, log.p = FALSE) # df qK(p, copula, d, n.MC = 0, log.p = FALSE, # quantile function method = c("default", "simple", "sort", "discrete", "monoH.FC"), u.grid, xtraChecks = FALSE, ...) rK(n, copula, d) # random number generation
u |
evaluation point(s) (in [0,1]). |
x |
data (in the d-dimensional space) based on which the Kendall distribution function is estimated. |
copula |
|
d |
dimension (not used when |
n.MC |
|
log.p |
|
p |
probabilities or log-probabilities if |
method |
for
For
|
u.grid |
(for |
xtraChecks |
experimental logical indicating if extra
checks should be done before calling |
... |
additional arguments passed to |
n |
sample size for |
For a completely monotone Archimedean generator psi,
K(u)=sum(k=0,...,d-1) psi^{(k)}(psi^{-1}(u))/k! (-psi^{-1}(u))^k, u in [0,1];
see Barbe et al. (1996). The corresponding density is
(-1)^d psi^{(d)}(psi^{-1}(u))(-(psi^{-1})'(u))(psi^{-1}(u))^{d-1}/(d-1)!
The empirical Kendall distribution function, density, distribution function, quantile function and random number generator.
Currently, the "default"
method of qK()
is fast but
not very accurate, see the ‘Examples’ for more accuracy (with
more CPU effort).
Barbe, P., Genest, C., Ghoudi, K., and Rémillard, B. (1996), On Kendall's Process, Journal of Multivariate Analysis 58, 197–229.
Hofert, M., Mächler, M., and McNeil, A. J. (2012). Likelihood inference for Archimedean copulas in high dimensions under known margins. Journal of Multivariate Analysis 110, 133–150. doi: 10.1016/j.jmva.2012.02.019
Genest, C. and Rivest, L.-P. (1993). Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association 88, 1034–1043.
Genest, C., G. Nešlehová, J., and Ziegel, J. (2011). Inference in multivariate Archimedean copula models. TEST 20, 223–256.
tau <- 0.5 (theta <- copGumbel@iTau(tau)) # 2 d <- 20 (cop <- onacopulaL("Gumbel", list(theta,1:d))) ## Basic check of the empirical Kendall distribution function set.seed(271) n <- 1000 U <- rCopula(n, copula = cop) X <- qnorm(U) K.sample <- pCopula(U, copula = cop) u <- seq(0, 1, length.out = 256) edfK <- ecdf(K.sample) plot(u, edfK(u), type = "l", ylim = 0:1, xlab = quote(italic(u)), ylab = quote(K[n](italic(u)))) # simulated K.n <- Kn(u, x = X) lines(u, K.n, col = "royalblue3") # Kn ## Difference at 0 edfK(0) # edf of K at 0 K.n[1] # K_n(0); this is > 0 since K.n is the edf of a discrete distribution ## => therefore, Kn(K.sample, x = X) is not uniform plot(Kn(K.sample, x = X), ylim = 0:1) ## Note: Kn(0) -> 0 for n -> Inf ## Compute Kendall distribution function u <- seq(0,1, length.out = 255) Ku <- pK(u, copula = cop@copula, d = d) # exact Ku.MC <- pK(u, copula = cop@copula, d = d, n.MC = 1000) # via Monte Carlo stopifnot(all.equal(log(Ku), pK(u, copula = cop@copula, d = d, log.p=TRUE)))# rel.err 3.2e-16 ## Build sample from K set.seed(1) n <- 200 W <- rK(n, copula = cop) ## Plot empirical distribution function based on W ## and the corresponding theoretical Kendall distribution function ## (exact and via Monte Carlo) plot(ecdf(W), col = "blue", xlim = 0:1, verticals=TRUE, main = quote("Empirical"~ F[n](C(U)) ~ "and its Kendall distribution" ~ K(u)), do.points = FALSE, asp = 1) abline(0,1, lty = 2); abline(h = 0:1, v = 0:1, lty = 3, col = "gray") lines(u, Ku.MC, col = "red") # not quite monotone lines(u, Ku, col = "black") # strictly monotone: stopifnot(diff(Ku) >= 0) legend(.25, .75, expression(F[n], K[MC](u), K(u)), col=c("blue" , "red", "black"), lty = 1, lwd = 1.5, bty = "n") if(require("Rmpfr")) { # pK() now also works with high precision numbers: uM <- mpfr(0:255, 99)/256 if(FALSE) { # not yet, now fails in polyG() : KuM <- pK(uM, copula = cop@copula, d = d) ## debug(copula:::.pK) debug(copula:::polyG) } }# if( Rmpfr ) ## Testing qK pexpr <- quote( 0:63/63 ); p <- eval(pexpr) d <- 10 cop <- onacopulaL("Gumbel", list(theta = 2, 1:d)) system.time(qK0 <- qK(p, copula = cop@copula, d = d)) # "default" - fast system.time(qK1 <- qK(p, copula= cop@copula, d=d, method = "simple")) system.time(qK1. <- qK(p, copula= cop@copula, d=d, method = "simple", tol = 1e-12)) system.time(qK2 <- qK(p, copula= cop@copula, d=d, method = "sort")) system.time(qK2. <- qK(p, copula= cop@copula, d=d, method = "sort", tol = 1e-12)) system.time(qK3 <- qK(p, copula= cop@copula, d=d, method = "discrete", u.grid = 0:1e4/1e4)) system.time(qK4 <- qK(p, copula= cop@copula, d=d, method = "monoH.FC", u.grid = 0:5e2/5e2)) system.time(qK4. <- qK(p, copula= cop@copula, d=d, method = "monoH.FC", u.grid = 0:5e2/5e2, tol = 1e-12)) system.time(qK5 <- qK(p, copula= cop@copula, d=d, method = "monoH.FC", u.grid = 0:5e3/5e3)) system.time(qK5. <- qK(p, copula= cop@copula, d=d, method = "monoH.FC", u.grid = 0:5e3/5e3, tol = 1e-12)) system.time(qK6 <- qK(p, copula= cop@copula, d=d, method = "monoH.FC", u.grid = (0:5e3/5e3)^2)) system.time(qK6. <- qK(p, copula= cop@copula, d=d, method = "monoH.FC", u.grid = (0:5e3/5e3)^2, tol = 1e-12)) ## Visually they all coincide : cols <- adjustcolor(c("gray50", "gray80", "light blue", "royal blue", "purple3", "purple4", "purple"), 0.6) matplot(p, cbind(qK0, qK1, qK2, qK3, qK4, qK5, qK6), type = "l", lwd = 2*7:1, lty = 1:7, col = cols, xlab = bquote(p == .(pexpr)), ylab = quote({K^{-1}}(u)), main = "qK(p, method = *)") legend("topleft", col = cols, lwd = 2*7:1, lty = 1:7, bty = "n", inset = .03, legend= paste0("method= ", sQuote(c("default", "simple", "sort", "discrete(1e4)", "monoH.FC(500)", "monoH.FC(5e3)", "monoH.FC(*^2)")))) ## See they *are* inverses (but only approximately!): eqInv <- function(qK) all.equal(p, pK(qK, cop@copula, d=d), tol=0) eqInv(qK0 ) # "default" 0.03 worst eqInv(qK1 ) # "simple" 0.0011 - best eqInv(qK1.) # "simple", e-12 0.00000 (8.73 e-13) ! eqInv(qK2 ) # "sort" 0.0013 (close) eqInv(qK2.) # "sort", e-12 0.00000 (7.32 e-12) eqInv(qK3 ) # "discrete" 0.0026 eqInv(qK4 ) # "monoH.FC(500)" 0.0095 eqInv(qK4.) # "m.H.FC(5c)e-12" 0.00963 eqInv(qK5 ) # "monoH.FC(5e3)" 0.001148 eqInv(qK5.) # "m.H.FC(5k)e-12" 0.000989 eqInv(qK6 ) # "monoH.FC(*^2)" 0.001111 eqInv(qK6.) # "m.H.FC(*^2)e-12"0.00000 (1.190 e-09) ## and ensure the differences are not too large stopifnot( all.equal(qK0, qK1, tol = 1e-2) # ! , all.equal(qK1, qK2, tol = 1e-4) , all.equal(qK2, qK3, tol = 1e-3) , all.equal(qK3, qK4, tol = 1e-3) , all.equal(qK4, qK0, tol = 1e-2) # ! ) stopifnot(all.equal(p, pK(qK0, cop@copula, d=d), tol = 0.04))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.