Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

duplicated

Determine Duplicate Rows


Description

duplicated returns a logical vector indicating which rows of a data.table are duplicates of a row with smaller subscripts.

unique returns a data.table with duplicated rows removed, by columns specified in by argument. When no by then duplicated rows by all columns are removed.

anyDuplicated returns the index i of the first duplicated entry if there is one, and 0 otherwise.

uniqueN is equivalent to length(unique(x)) when x is an atomic vector, and nrow(unique(x)) when x is a data.frame or data.table. The number of unique rows are computed directly without materialising the intermediate unique data.table and is therefore faster and memory efficient.

Usage

## S3 method for class 'data.table'
duplicated(x, incomparables=FALSE, fromLast=FALSE, by=seq_along(x), ...)

## S3 method for class 'data.table'
unique(x, incomparables=FALSE, fromLast=FALSE, by=seq_along(x), ...)

## S3 method for class 'data.table'
anyDuplicated(x, incomparables=FALSE, fromLast=FALSE, by=seq_along(x), ...)

uniqueN(x, by=if (is.list(x)) seq_along(x) else NULL, na.rm=FALSE)

Arguments

x

A data.table. uniqueN accepts atomic vectors and data.frames as well.

...

Not used at this time.

incomparables

Not used. Here for S3 method consistency.

fromLast

logical indicating if duplication should be considered from the reverse side, i.e., the last (or rightmost) of identical elements would correspond to duplicated = FALSE.

by

character or integer vector indicating which combinations of columns from x to use for uniqueness checks. By default all columns are being used. That was changed recently for consistency to data.frame methods. In version < 1.9.8 default was key(x).

na.rm

Logical (default is FALSE). Should missing values (including NaN) be removed?

Details

Because data.tables are usually sorted by key, tests for duplication are especially quick when only the keyed columns are considered. Unlike unique.data.frame, paste is not used to ensure equality of floating point data. It is instead accomplished directly and is therefore quite fast. data.table provides setNumericRounding to handle cases where limitations in floating point representation is undesirable.

v1.9.4 introduces anyDuplicated method for data.tables and is similar to base in functionality. It also implements the logical argument fromLast for all three functions, with default value FALSE.

Value

duplicated returns a logical vector of length nrow(x) indicating which rows are duplicates.

unique returns a data table with duplicated rows removed.

anyDuplicated returns a integer value with the index of first duplicate. If none exists, 0L is returned.

uniqueN returns the number of unique elements in the vector, data.frame or data.table.

See Also

Examples

DT <- data.table(A = rep(1:3, each=4), B = rep(1:4, each=3),
                  C = rep(1:2, 6), key = "A,B")
duplicated(DT)
unique(DT)

duplicated(DT, by="B")
unique(DT, by="B")

duplicated(DT, by=c("A", "C"))
unique(DT, by=c("A", "C"))

DT = data.table(a=c(2L,1L,2L), b=c(1L,2L,1L))   # no key
unique(DT)                   # rows 1 and 2 (row 3 is a duplicate of row 1)

DT = data.table(a=c(3.142, 4.2, 4.2, 3.142, 1.223, 1.223), b=rep(1,6))
unique(DT)                   # rows 1,2 and 5

DT = data.table(a=tan(pi*(1/4 + 1:10)), b=rep(1,10))   # example from ?all.equal
length(unique(DT$a))         # 10 strictly unique floating point values
all.equal(DT$a,rep(1,10))    # TRUE, all within tolerance of 1.0
DT[,which.min(a)]            # row 10, the strictly smallest floating point value
identical(unique(DT),DT[1])  # TRUE, stable within tolerance
identical(unique(DT),DT[10]) # FALSE

# fromLast=TRUE
DT <- data.table(A = rep(1:3, each=4), B = rep(1:4, each=3),
                 C = rep(1:2, 6), key = "A,B")
duplicated(DT, by="B", fromLast=TRUE)
unique(DT, by="B", fromLast=TRUE)

# anyDuplicated
anyDuplicated(DT, by=c("A", "B"))    # 3L
any(duplicated(DT, by=c("A", "B")))  # TRUE

# uniqueN, unique rows on key columns
uniqueN(DT, by = key(DT))
# uniqueN, unique rows on all columns
uniqueN(DT)
# uniqueN while grouped by "A"
DT[, .(uN=uniqueN(.SD)), by=A]

# uniqueN's na.rm=TRUE
x = sample(c(NA, NaN, runif(3)), 10, TRUE)
uniqueN(x, na.rm = FALSE) # 5, default
uniqueN(x, na.rm=TRUE) # 3

data.table

Extension of `data.frame`

v1.14.0
MPL-2.0 | file LICENSE
Authors
Matt Dowle [aut, cre], Arun Srinivasan [aut], Jan Gorecki [ctb], Michael Chirico [ctb], Pasha Stetsenko [ctb], Tom Short [ctb], Steve Lianoglou [ctb], Eduard Antonyan [ctb], Markus Bonsch [ctb], Hugh Parsonage [ctb], Scott Ritchie [ctb], Kun Ren [ctb], Xianying Tan [ctb], Rick Saporta [ctb], Otto Seiskari [ctb], Xianghui Dong [ctb], Michel Lang [ctb], Watal Iwasaki [ctb], Seth Wenchel [ctb], Karl Broman [ctb], Tobias Schmidt [ctb], David Arenburg [ctb], Ethan Smith [ctb], Francois Cocquemas [ctb], Matthieu Gomez [ctb], Philippe Chataignon [ctb], Nello Blaser [ctb], Dmitry Selivanov [ctb], Andrey Riabushenko [ctb], Cheng Lee [ctb], Declan Groves [ctb], Daniel Possenriede [ctb], Felipe Parages [ctb], Denes Toth [ctb], Mus Yaramaz-David [ctb], Ayappan Perumal [ctb], James Sams [ctb], Martin Morgan [ctb], Michael Quinn [ctb], @javrucebo [ctb], @marc-outins [ctb], Roy Storey [ctb], Manish Saraswat [ctb], Morgan Jacob [ctb], Michael Schubmehl [ctb], Davis Vaughan [ctb], Toby Hocking [ctb], Leonardo Silvestri [ctb], Tyson Barrett [ctb], Jim Hester [ctb], Anthony Damico [ctb], Sebastian Freundt [ctb], David Simons [ctb], Elliott Sales de Andrade [ctb], Cole Miller [ctb], Jens Peder Meldgaard [ctb], Vaclav Tlapak [ctb], Kevin Ushey [ctb], Dirk Eddelbuettel [ctb], Ben Schwen [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.