Functional Penalized PLS regression with scalar response
Computes functional linear regression between functional explanatory variable X(t) and scalar response Y using penalized Partial Least Squares (PLS)
Y=<\tilde{X},β>+ε
where <.,.> denotes the inner product on
L_2 and ε are random errors with mean zero , finite variance σ^2 and E[X(t)ε]=0.
ν_1,...,ν_∞ orthonormal basis of PLS to represent the functional data as X(t)=∑_(k=1:∞)
γ_k ν_k.
fregre.pls(fdataobj, y = NULL, l = NULL, lambda = 0, P = c(0, 0, 1), ...)
fdataobj |
|
y |
Scalar response with length |
l |
Index of components to include in the model. |
lambda |
Amount of penalization. Default value is 0, i.e. no penalization is used. |
P |
If |
... |
Further arguments passed to or from other methods. |
Functional (FPLS) algorithm maximizes the covariance between X(t) and the scalar response Y via the partial least squares (PLS) components.
The functional penalized PLS are calculated in fdata2pls
by alternative formulation of the NIPALS algorithm proposed by Kraemer and
Sugiyama (2011).
Let {ν_k}_k=1:∞ the functional PLS components and X_i(t)=∑{k=1:∞}
γ_{ik} ν_k and β(t)=∑{k=1:∞}
β_k ν_k. The functional linear model is estimated by:
y.est=< X,β.est > \approx ∑{k=1:k_n} γ_k β_k
The response can be fitted by:
λ=0, no penalization,
y.est= ν'(ν'ν)^{-1}ν'y
Penalized regression, λ>0 and P!=0. For example, P=c(0,0,1) penalizes the
second derivative (curvature) by P=P.penalty(fdataobj["argvals"],P)
,
y.est=ν'(ν'ν+λ v'Pv)^{-1}ν'y
Return:
call
The matched call of fregre.pls
function.
beta.est
Beta coefficient estimated of class fdata
.
coefficients
A named vector of coefficients.
fitted.values
Estimated scalar response.
residuals
y
-fitted values
.
H
Hat matrix.
df
The residual degrees of freedom.
r2
Coefficient of determination.
GCV
GCV criterion.
sr2
Residual variance.
l
Index of components to include in the model.
lambda
Amount of shrinkage.
fdata.comp
Fitted object in fdata2pls
function.
lm
Fitted object in lm
function
fdataobj
Functional explanatory data.
y
Scalar response.
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@usc.es
Preda C. and Saporta G. PLS regression on a stochastic process. Comput. Statist. Data Anal. 48 (2005): 149-158.
N. Kraemer, A.-L. Boulsteix, and G. Tutz (2008). Penalized Partial Least Squares with Applications to B-Spline Transformations and Functional Data. Chemometrics and Intelligent Laboratory Systems, 94, 60 - 69. http://dx.doi.org/10.1016/j.chemolab.2008.06.009
Martens, H., Naes, T. (1989) Multivariate calibration. Chichester: Wiley.
Kraemer, N., Sugiyama M. (2011). The Degrees of Freedom of Partial Least Squares Regression. Journal of the American Statistical Association. Volume 106, 697-705.
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. http://www.jstatsoft.org/v51/i04/
See Also as: P.penalty
and
fregre.pls.cv
.
Alternative method: fregre.pc
.
## Not run: data(tecator) x<-tecator$absorp.fdata y<-tecator$y$Fat res=fregre.pls(x,y,c(1:8),lambda=10) summary(res) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.