Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

setFixest_fml

Sets/gets formula macros


Description

You can set formula macros globally with setFixest_fml. These macros can then be used in fixest estimations or when using the function xpd.

Usage

setFixest_fml(..., reset = FALSE)

getFixest_fml()

Arguments

...

Definition of the macro variables. Each argument name corresponds to the name of the macro variable. It is required that each macro variable name starts with two dots (e.g. ..ctrl). The value of each argument must be a one-sided formula or a character vector, it is the definition of the macro variable. Example of a valid call: setFixest_fml(..ctrl = ~ var1 + var2). In the function xpd, the default macro variables are taken from getFixest_fml, any variable in ... will replace these values. You can enclose values in .[], if so they will be evaluated from the current environment. For example ..ctrl = ~ x.[1:2] + .[z] will lead to ~x1 + x2 + var if z is equal to "var".

reset

A logical scalar, defaults to FALSE. If TRUE, all macro variables are first reset (i.e. deleted).

Details

In xpd, the default macro variables are taken from getFixest_fml. Any value in the ... argument of xpd will replace these default values.

The definitions of the macro variables will replace in verbatim the macro variables. Therefore, you can include multipart formulas if you wish but then beware of the order the the macros variable in the formula. For example, using the airquality data, say you want to set as controls the variable Temp and Day fixed-effects, you can do setFixest_fml(..ctrl = ~Temp | Day), but then feols(Ozone ~ Wind + ..ctrl, airquality) will be quite different from feols(Ozone ~ ..ctrl + Wind, airquality), so beware!

Value

The function getFixest_fml() returns a list of character strings, the names corresponding to the macro variable names, the character strings corresponding to their definition.

See Also

xpd to make use of formula macros.

Examples

# Small examples with airquality data
data(airquality)
# we set two macro variables
setFixest_fml(..ctrl = ~ Temp + Day,
              ..ctrl_long = ~ poly(Temp, 2) + poly(Day, 2))

# Using the macro in lm with xpd:
lm(xpd(Ozone ~ Wind + ..ctrl), airquality)
lm(xpd(Ozone ~ Wind + ..ctrl_long), airquality)

# You can use the macros without xpd() in fixest estimations
a = feols(Ozone ~ Wind + ..ctrl, airquality)
b = feols(Ozone ~ Wind + ..ctrl_long, airquality)
etable(a, b, keep = "Int|Win")


# Using .[]

base = setNames(iris, c("y", "x1", "x2", "x3", "species"))
i = 2:3
z = "species"
lm(xpd(y ~ x.[2:3] + .[z]), base)

# No xpd() needed in feols
feols(y ~ x.[2:3] + .[z], base)

#
# You can use xpd for stepwise estimations
#

# Note that for stepwise estimations in fixest, you can use
# the stepwise functions: sw, sw0, csw, csw0
# -> see help in feols or in the dedicated vignette

# we want to look at the effect of x1 on y
# controlling for different variables

base = iris
names(base) = c("y", "x1", "x2", "x3", "species")

# We first create a matrix with all possible combinations of variables
my_args = lapply(names(base)[-(1:2)], function(x) c("", x))
(all_combs = as.matrix(do.call("expand.grid", my_args)))

res_all = list()
for(i in 1:nrow(all_combs)){
  res_all[[i]] = feols(xpd(y ~ x1 + ..v, ..v = all_combs[i, ]), base)
}

etable(res_all)
coefplot(res_all, group = list(Species = "^^species"))

#
# You can use macros to grep variables in your data set
#

# Example 1: setting a macro variable globally

data(longley)
setFixest_fml(..many_vars = grep("GNP|ployed", names(longley), value = TRUE))
feols(Armed.Forces ~ Population + ..many_vars, longley)

# Example 2: using ..("regex") to grep the variables "live"

feols(Armed.Forces ~ Population + ..("GNP|ployed"), longley)

# Example 3: same as Ex.2 but without using a fixest estimation

# Here we need to use xpd():
lm(xpd(Armed.Forces ~ Population + ..("GNP|ployed"), data = longley), longley)

#
# You can also put numbers in macros
#

res_all = list()
for(p in 1:3){
  res_all[[p]] = feols(xpd(Ozone ~ Wind + poly(Temp, ..p), ..p = p), airquality)
}

etable(res_all)

#
# lhs and rhs arguments
#

# to create a one sided formula from a character vector
vars = letters[1:5]
xpd(rhs = vars)

# Alternatively, to replace the RHS
xpd(y ~ 1, rhs = vars)

# To create a two sided formula
xpd(lhs = "y", rhs = vars)


#
# Dot square bracket operator
#

# You can create multiple variables at once
xpd(y ~ x.[1:5] + z.[2:3])

# You can summon variables from the environment
var = "a"
xpd(y ~ x.[var])

# ... the variables can be multiple
vars = LETTERS[1:3]
xpd(y ~ x.[vars])

# You can have "complex" variable names but they must be nested in character form
xpd(y ~ .["x.[vars]_sq"])

# DSB can be used within regular expressions
re = c("GNP", "Pop")
xpd(Unemployed ~ ..(".[re]"), data = longley)

# => equivalent to ..("GNP|Pop")

fixest

Fast Fixed-Effects Estimations

v0.10.0
GPL-3
Authors
Laurent Berge [aut, cre], Sebastian Krantz [ctb], Grant McDermott [ctb] (<https://orcid.org/0000-0001-7883-8573>)
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.