Beta Negative Binomial distribution for fitting a GAMLSS
The BNB()
function defines the beta negative binomial distribution, a three parameter distribution, for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The functions dBNB
, pBNB
, qBNB
and rBNB
define the density, distribution function, quantile function and random
generation for the beta negative binomial distribution, BNB()
.
The functions ZABNB()
and ZIBNB()
are the zero adjusted (hurdle) and zero inflated versions of the beta negative binomial distribution, respectively. That is four parameter distributions.
The functions dZABNB
, dZIBNB
, pZABNB
,pZIBNB
, qZABNB
qZIBNB
rZABNB
and rZIBNB
define the probability, cumulative, quantile and random
generation functions for the zero adjusted and zero inflated beta negative binomial distributions, ZABNB()
, ZIBNB()
, respectively.
BNB(mu.link = "log", sigma.link = "log", nu.link = "log") dBNB(x, mu = 1, sigma = 1, nu = 1, log = FALSE) pBNB(q, mu = 1, sigma = 1, nu = 1, lower.tail = TRUE, log.p = FALSE) qBNB(p, mu = 1, sigma = 1, nu = 1, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rBNB(n, mu = 1, sigma = 1, nu = 1, max.value = 10000) ZABNB(mu.link = "log", sigma.link = "log", nu.link = "log", tau.link = "logit") dZABNB(x, mu = 1, sigma = 1, nu = 1, tau = 0.1, log = FALSE) pZABNB(q, mu = 1, sigma = 1, nu = 1, tau = 0.1, lower.tail = TRUE, log.p = FALSE) qZABNB(p, mu = 1, sigma = 1, nu = 1, tau = 0.1, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rZABNB(n, mu = 1, sigma = 1, nu = 1, tau = 0.1, max.value = 10000) ZIBNB(mu.link = "log", sigma.link = "log", nu.link = "log", tau.link = "logit") dZIBNB(x, mu = 1, sigma = 1, nu = 1, tau = 0.1, log = FALSE) pZIBNB(q, mu = 1, sigma = 1, nu = 1, tau = 0.1, lower.tail = TRUE, log.p = FALSE) qZIBNB(p, mu = 1, sigma = 1, nu = 1, tau = 0.1, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rZIBNB(n, mu = 1, sigma = 1, nu = 1, tau = 0.1, max.value = 10000)
mu.link |
The link function for |
sigma.link |
The link function for |
nu.link |
The link function for |
tau.link |
The link function for |
x |
vector of (non-negative integer) |
mu |
vector of positive means |
sigma |
vector of positive dispersion parameter |
nu |
vector of a positive parameter |
tau |
vector of probabilities |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
max.value |
a constant, set to the default value of 10000 for how far the algorithm should look for q |
The probability function of the BNB
is
f(y|μ,σ, ν)=(Γ(y+1/ν)Β(y+(μν)/σ, 1/σ+1/ν +1 )/(Γ(y+1) Γ(1/ν) Β((μν)/σ, 1/σ+1) )
for y=0,1,2,3,..., μ>0, σ>0 and ν>0.
The distribution has mean μ.
returns a gamlss.family
object which can be used to fit a Poisson distribution in the gamlss()
function.
Bob Rigby and Mikis Stasinopoulos d.stasinopoulos@londonmrt.ac.uk
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also https://www.gamlss.com/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
BNB() # gives information about the default links for the beta negative binomial # plotting the distribution plot(function(y) dBNB(y, mu = 10, sigma = 0.5, nu=2), from=0, to=40, n=40+1, type="h") # creating random variables and plot them tN <- table(Ni <- rBNB(1000, mu=5, sigma=0.5, nu=2)) r <- barplot(tN, col='lightblue') ZABNB() ZIBNB() # plotting the distribution plot(function(y) dZABNB(y, mu = 10, sigma = 0.5, nu=2, tau=.1), from=0, to=40, n=40+1, type="h") plot(function(y) dZIBNB(y, mu = 10, sigma = 0.5, nu=2, tau=.1), from=0, to=40, n=40+1, type="h") ## Not run: library(gamlss) data(species) species <- transform(species, x=log(lake)) m6 <- gamlss(fish~ pb(x), sigma.fo=~1, data=species, family=BNB) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.