Logistic distribution for fitting a GAMLSS
The function LO()
, or equivalently Logistic()
, defines the logistic distribution, a two parameter distribution,
for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
LO(mu.link = "identity", sigma.link = "log") dLO(x, mu = 0, sigma = 1, log = FALSE) pLO(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qLO(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rLO(n, mu = 0, sigma = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
x,q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
Definition file for Logistic distribution.
f(y|mu,sigma)=(1/sigma)*exp((y-mu)/sigma)*((1+exp(-(y-mu)/sigma))^(-2))
for y=(-Inf,+Inf), μ=(-Inf,+Inf) and σ>0.
LO()
returns a gamlss.family
object which can be used to fit a logistic distribution in the gamlss()
function.
dLO()
gives the density, pLO()
gives the distribution
function, qLO()
gives the quantile function, and rLO()
generates random deviates for the logistic distribution.
The latest functions are based on the equivalent R
functions for logistic distribution.
mu is the mean and sigma*pi/sqrt(3) is the standard deviation for the logistic distribution
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
LO()# gives information about the default links for the Logistic distribution plot(function(y) dLO(y, mu=10 ,sigma=2), 0, 20) plot(function(y) pLO(y, mu=10 ,sigma=2), 0, 20) plot(function(y) qLO(y, mu=10 ,sigma=2), 0, 1) # library(gamlss) # data(abdom) # h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=LO, data=abdom) # fits # plot(h)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.