Negative Binomial Family distribution for fitting a GAMLSS
The NBF()
function defines the Negative Binomial family distribution, a three parameter distribution, for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The functions dNBF
, pNBF
, qNBF
and rNBF
define the density, distribution function, quantile function and random generation for the negative binomial family, NBF()
, distribution.
The functions dZINBF
, pZINBF
, qZINBF
and rZINBF
define the density, distribution function, quantile function and random generation for the zero inflated negative binomial family, ZINBF()
, distribution a four parameter distribution.
NBF(mu.link = "log", sigma.link = "log", nu.link = "log") dNBF(x, mu = 1, sigma = 1, nu = 2, log = FALSE) pNBF(q, mu = 1, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE) qNBF(p, mu = 1, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE) rNBF(n, mu = 1, sigma = 1, nu = 2) ZINBF(mu.link = "log", sigma.link = "log", nu.link = "log", tau.link = "logit") dZINBF(x, mu = 1, sigma = 1, nu = 2, tau = 0.1, log = FALSE) pZINBF(q, mu = 1, sigma = 1, nu = 2, tau = 0.1, lower.tail = TRUE, log.p = FALSE) qZINBF(p, mu = 1, sigma = 1, nu = 2, tau = 0.1, lower.tail = TRUE, log.p = FALSE) rZINBF(n, mu = 1, sigma = 1, nu = 2, tau = 0.1)
mu.link |
The link function for |
sigma.link |
The link function for |
nu.link |
The link function for |
tau.link |
The link function for |
x |
vector of (non-negative integer) |
mu |
vector of positive means |
sigma |
vector of positive dispersion parameter |
nu |
vector of power parameter |
tau |
vector of inflation parameter |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
The definition for Negative Binomial Family distribution , NBF
, is similar to the Negative Binomial type I. The probability function of the NBF
can be obtained by replacing σ with σ μ^{ν-2} where ν is a power parameter.
The distribution has mean μ and variance μ+σ μ^{ν}.
returns a gamlss.family
object which can be used to fit a Negative Binomial Family distribution in the gamlss()
function.
Bob Rigby and Mikis Stasinopoulos
Anscombe, F. J. (1950) Sampling theory of the negative binomial and logarithmic distributions, Biometrika, 37, 358-382.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also https://www.gamlss.com/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
NBF() # default link functions for the Negative Binomial Family # plotting the distribution plot(function(y) dNBF(y, mu = 10, sigma = 0.5, nu=2 ), from=0, to=40, n=40+1, type="h") # creating random variables and plot them tN <- table(Ni <- rNBF(1000, mu=5, sigma=0.5, nu=2)) r <- barplot(tN, col='lightblue') # zero inflated NBF ZINBF() # default link functions for the zero inflated NBF # plotting the distribution plot(function(y) dZINBF(y, mu = 10, sigma = 0.5, nu=2, tau=.1 ), from=0, to=40, n=40+1, type="h") # creating random variables and plot them tN <- table(Ni <- rZINBF(1000, mu=5, sigma=0.5, nu=2, tau=0.1)) r <- barplot(tN, col='lightblue') ## Not run: library(gamlss) data(species) species <- transform(species, x=log(lake)) m6 <- gamlss(fish~poly(x,2), sigma.fo=~1, data=species, family=NBF, n.cyc=200) fitted(m6, "nu")[1] ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.