Zero inflated and zero adjusted negative binomial distributions for fitting a GAMLSS model
The function ZINBI
defines the zero inflated negative binomial distribution, a three parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
. The functions dZINBI
, pZINBI
,
qZINBI
and rZINBI
define the
density, distribution function, quantile function
and random generation for the zero inflated negative binomial, ZINBI()
, distribution.
The function ZANBI
defines the zero adjusted negative binomial distribution, a three parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
. The functions dZANBI
, pZANBI
,
qZANBI
and rZANBI
define the
density, distribution function, quantile function
and random generation for the zero inflated negative binomial, ZANBI()
, distribution.
ZINBI(mu.link = "log", sigma.link = "log", nu.link = "logit") dZINBI(x, mu = 1, sigma = 1, nu = 0.3, log = FALSE) pZINBI(q, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE) qZINBI(p, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE) rZINBI(n, mu = 1, sigma = 1, nu = 0.3) ZANBI(mu.link = "log", sigma.link = "log", nu.link = "logit") dZANBI(x, mu = 1, sigma = 1, nu = 0.3, log = FALSE) pZANBI(q, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE) qZANBI(p, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE) rZANBI(n, mu = 1, sigma = 1, nu = 0.3)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive means |
sigma |
vector of positive despersion parameter |
nu |
vector of zero probability parameter |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
The definition for the zero inflated Negative Binomial type I distribution and for the zero adjusted Negative Binomial type I distribution is given in Rigby and Stasinopoulos (2010) below
The functions ZINBI
and ZANBI
return a gamlss.family
object which can be used to fit a
zero inflated or zero adjusted Negative Binomial type I distribution respectively in the gamlss()
function.
Mikis Stasinopoulos, Bob Rigby
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
ZINBI() ZANBI() # creating data and plotting them dat <- rZINBI(1000, mu=5, sigma=.5, nu=0.1) r <- barplot(table(dat), col='lightblue') dat1 <- rZANBI(1000, mu=5, sigma=.5, nu=0.1) r1 <- barplot(table(dat1), col='lightblue')
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.