Keras Model composed of a linear stack of layers
Keras Model composed of a linear stack of layers
keras_model_sequential(layers = NULL, name = NULL)
layers |
List of layers to add to the model |
name |
Name of model |
The first layer passed to a Sequential model should have a defined input
shape. What that means is that it should have received an input_shape
or
batch_input_shape
argument, or for some type of layers (recurrent,
Dense...) an input_dim
argument.
Other model functions:
compile.keras.engine.training.Model()
,
evaluate.keras.engine.training.Model()
,
evaluate_generator()
,
fit.keras.engine.training.Model()
,
fit_generator()
,
get_config()
,
get_layer()
,
keras_model()
,
multi_gpu_model()
,
pop_layer()
,
predict.keras.engine.training.Model()
,
predict_generator()
,
predict_on_batch()
,
predict_proba()
,
summary.keras.engine.training.Model()
,
train_on_batch()
## Not run: library(keras) model <- keras_model_sequential() model %>% layer_dense(units = 32, input_shape = c(784)) %>% layer_activation('relu') %>% layer_dense(units = 10) %>% layer_activation('softmax') model %>% compile( optimizer = 'rmsprop', loss = 'categorical_crossentropy', metrics = c('accuracy') ) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.