funFEM interface
funFEM interface
## S4 method for signature 'lcMethodFunFEM' getName(object) ## S4 method for signature 'lcMethodFunFEM' getShortName(object) ## S4 method for signature 'lcMethodFunFEM' preFit(method, data, envir, verbose, ...) ## S4 method for signature 'lcMethodFunFEM' fit(method, data, envir, verbose, ...) ## S3 method for class 'lcModelFunFEM' fitted(object, ..., clusters = trajectoryAssignments(object)) ## S4 method for signature 'lcModelFunFEM' predictForCluster( object, newdata, cluster, what = "mu", approxFun = approx, ... ) ## S4 method for signature 'lcModelFunFEM' postprob(object, ...) ## S3 method for class 'lcModelFunFEM' coef(object, ...) ## S3 method for class 'lcModelFunFEM' logLik(object, ...) ## S4 method for signature 'lcModelFunFEM' converged(object, ...)
object |
The object to extract the label from. |
method |
The |
data |
The data, as a |
envir |
The |
verbose |
A R.utils::Verbose object indicating the level of verbosity. |
... |
Additional arguments. |
clusters |
Optional cluster assignments per id. If unspecified, a |
newdata |
Optional |
cluster |
The cluster name (as |
what |
The distributional parameter to predict. By default, the mean response 'mu' is predicted. The cluster membership predictions can be obtained by specifying |
approxFun |
Function to interpolate between measurement moments, approx() by default. |
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.