Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

latrendCV

Cluster longitudinal data over k folds


Description

Apply k-fold cross validation for internal cluster validation. Creates k random subsets ("folds") from the data, estimating a model for each of the k-1 combined folds.

Usage

latrendCV(
  method,
  data,
  folds = 10,
  seed = NULL,
  parallel = FALSE,
  errorHandling = "stop",
  envir = NULL,
  verbose = getOption("latrend.verbose")
)

Arguments

method

The lcMethod object specifying the longitudinal cluster method to apply.

data

A data.frame.

folds

The number of folds. Ten folds by default.

seed

The seed to use. Optional.

parallel

Whether to enable parallel evaluation. See latrend-parallel.

errorHandling

Whether to "stop" on an error, or to "remove' evaluations that raised an error.

envir

The environment in which to evaluate the method arguments. Note that this only applies to data when data is a call.

verbose

The level of verbosity. Either an object of class Verbose (see R.utils::Verbose for details), a logical indicating whether to show basic computation information, a numeric indicating the verbosity level (see Verbose), or one of c('info', 'fine', 'finest').

Value

A lcModels object of containing the folds training models.

See Also

Other longitudinal cluster fit functions: latrendBatch(), latrendBoot(), latrendRep(), latrend()

Examples

data(latrendData)
method <- lcMethodKML("Y", id = "Id", time = "Time")
model <- latrendCV(method, latrendData, folds = 5)

model <- latrendCV(method, subset(latrendData, Time < .5), folds = 5, seed = 1)

latrend

A Framework for Clustering Longitudinal Data

v1.1.2
GPL (>= 2)
Authors
Niek Den Teuling [aut, cre] (<https://orcid.org/0000-0003-1026-5080>), Steffen Pauws [ctb], Edwin van den Heuvel [ctb], Copyright © 2021 Koninklijke Philips N.V. [cph]
Initial release
2021-04-14

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.