Weighted variance and weighted standard deviation
Computes a weighted variance / standard deviation of a numeric vector or across rows or columns of a matrix.
weightedVar(x, w = NULL, idxs = NULL, na.rm = FALSE, center = NULL, ...) weightedSd(...) rowWeightedVars(x, w = NULL, rows = NULL, cols = NULL, na.rm = FALSE, ...) colWeightedVars(x, w = NULL, rows = NULL, cols = NULL, na.rm = FALSE, ...) rowWeightedSds(x, w = NULL, rows = NULL, cols = NULL, na.rm = FALSE, ...) colWeightedSds(x, w = NULL, rows = NULL, cols = NULL, na.rm = FALSE, ...)
x |
a |
w |
a vector of weights the same length as |
idxs, rows, cols |
A |
na.rm |
a logical value indicating whether |
center |
Optional |
... |
Not used. |
The estimator used here is the same as the one used by the "unbiased"
estimator of the Hmisc package. More specifically,
weightedVar(x, w = w) == Hmisc::wtd.var(x, weights = w)
,
Returns a numeric
scalar.
This function handles missing values consistently with
weightedMean
().
More precisely, if na.rm = FALSE
, then any missing values in either
x
or w
will give result NA_real_
.
If na.rm = TRUE
, then all (x, w)
data points for which
x
is missing are skipped. Note that if both x
and w
are missing for a data points, then it is also skipped (by the same rule).
However, if only w
is missing, then the final results will always
be NA_real_
regardless of na.rm
.
Henrik Bengtsson
For the non-weighted variance, see var
.
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.