Simulate from Parameterized MVN Mixture Models
Simulate data from parameterized MVN mixture models.
sim(modelName, parameters, n, seed = NULL, ...)
modelName |
A character string indicating the model. The help file for
|
parameters |
A list with the following components:
|
n |
An integer specifying the number of data points to be simulated. |
seed |
An optional integer argument to |
... |
Catches unused arguments in indirect or list calls via |
This function can be used with an indirect or list call using
do.call
, allowing the output of e.g. mstep
, em
,
me
, Mclust
to be passed directly without the need to
specify individual parameters as arguments.
A matrix in which first column is the classification and the remaining
columns are the n
observations simulated from the specified MVN
mixture model.
Attributes: |
|
irisBIC <- mclustBIC(iris[,-5]) irisModel <- mclustModel(iris[,-5], irisBIC) names(irisModel) irisSim <- sim(modelName = irisModel$modelName, parameters = irisModel$parameters, n = nrow(iris)) do.call("sim", irisModel) # alternative call par(pty = "s", mfrow = c(1,2)) dimnames(irisSim) <- list(NULL, c("dummy", (dimnames(iris)[[2]])[-5])) dimens <- c(1,2) lim1 <- apply(iris[,dimens],2,range) lim2 <- apply(irisSim[,dimens+1],2,range) lims <- apply(rbind(lim1,lim2),2,range) xlim <- lims[,1] ylim <- lims[,2] coordProj(iris[,-5], parameters=irisModel$parameters, classification=map(irisModel$z), dimens=dimens, xlim=xlim, ylim=ylim) coordProj(iris[,-5], parameters=irisModel$parameters, classification=map(irisModel$z), truth = irisSim[,-1], dimens=dimens, xlim=xlim, ylim=ylim) irisModel3 <- mclustModel(iris[,-5], irisBIC, G=3) irisSim3 <- sim(modelName = irisModel3$modelName, parameters = irisModel3$parameters, n = 500, seed = 1) irisModel3$n <- NULL irisSim3 <- do.call("sim",c(list(n=500,seed=1),irisModel3)) # alternative call clPairs(irisSim3[,-1], cl = irisSim3[,1])
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.