Simulate from a Parameterized MVN Mixture Model
Simulate data from a parameterized MVN mixture model.
simE(parameters, n, seed = NULL, ...) simV(parameters, n, seed = NULL, ...) simEII(parameters, n, seed = NULL, ...) simVII(parameters, n, seed = NULL, ...) simEEI(parameters, n, seed = NULL, ...) simVEI(parameters, n, seed = NULL, ...) simEVI(parameters, n, seed = NULL, ...) simVVI(parameters, n, seed = NULL, ...) simEEE(parameters, n, seed = NULL, ...) simVEE(parameters, n, seed = NULL, ...) simEVE(parameters, n, seed = NULL, ...) simVVE(parameters, n, seed = NULL, ...) simEEV(parameters, n, seed = NULL, ...) simVEV(parameters, n, seed = NULL, ...) simEVV(parameters, n, seed = NULL, ...) simVVV(parameters, n, seed = NULL, ...)
parameters |
A list with the following components:
|
n |
An integer specifying the number of data points to be simulated. |
seed |
An optional integer argument to |
... |
Catches unused arguments in indirect or list calls via |
This function can be used with an indirect or list call using
do.call, allowing the output of e.g. mstep, em
me, Mclust, to be passed directly without the need
to specify individual parameters as arguments.
A matrix in which first column is the classification and the remaining
columns are the n observations simulated from the specified MVN
mixture model.
Attributes: |
|
d <- 2
G <- 2
scale <- 1
shape <- c(1, 9)
O1 <- diag(2)
O2 <- diag(2)[,c(2,1)]
O <- array(cbind(O1,O2), c(2, 2, 2))
O
variance <- list(d= d, G = G, scale = scale, shape = shape, orientation = O)
mu <- matrix(0, d, G) ## center at the origin
simdat <- simEEV( n = 200,
parameters = list(pro=c(1,1),mean=mu,variance=variance),
seed = NULL)
cl <- simdat[,1]
sigma <- array(apply(O, 3, function(x,y) crossprod(x*y),
y = sqrt(scale*shape)), c(2,2,2))
paramList <- list(mu = mu, sigma = sigma)
coordProj( simdat, paramList = paramList, classification = cl)Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.