Simulate from a Parameterized MVN Mixture Model
Simulate data from a parameterized MVN mixture model.
simE(parameters, n, seed = NULL, ...) simV(parameters, n, seed = NULL, ...) simEII(parameters, n, seed = NULL, ...) simVII(parameters, n, seed = NULL, ...) simEEI(parameters, n, seed = NULL, ...) simVEI(parameters, n, seed = NULL, ...) simEVI(parameters, n, seed = NULL, ...) simVVI(parameters, n, seed = NULL, ...) simEEE(parameters, n, seed = NULL, ...) simVEE(parameters, n, seed = NULL, ...) simEVE(parameters, n, seed = NULL, ...) simVVE(parameters, n, seed = NULL, ...) simEEV(parameters, n, seed = NULL, ...) simVEV(parameters, n, seed = NULL, ...) simEVV(parameters, n, seed = NULL, ...) simVVV(parameters, n, seed = NULL, ...)
parameters |
A list with the following components:
|
n |
An integer specifying the number of data points to be simulated. |
seed |
An optional integer argument to |
... |
Catches unused arguments in indirect or list calls via |
This function can be used with an indirect or list call using
do.call
, allowing the output of e.g. mstep
, em
me
, Mclust
, to be passed directly without the need
to specify individual parameters as arguments.
A matrix in which first column is the classification and the remaining
columns are the n
observations simulated from the specified MVN
mixture model.
Attributes: |
|
d <- 2 G <- 2 scale <- 1 shape <- c(1, 9) O1 <- diag(2) O2 <- diag(2)[,c(2,1)] O <- array(cbind(O1,O2), c(2, 2, 2)) O variance <- list(d= d, G = G, scale = scale, shape = shape, orientation = O) mu <- matrix(0, d, G) ## center at the origin simdat <- simEEV( n = 200, parameters = list(pro=c(1,1),mean=mu,variance=variance), seed = NULL) cl <- simdat[,1] sigma <- array(apply(O, 3, function(x,y) crossprod(x*y), y = sqrt(scale*shape)), c(2,2,2)) paramList <- list(mu = mu, sigma = sigma) coordProj( simdat, paramList = paramList, classification = cl)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.