Creates Imputed Dataset from a mids.nmi or mids.1chain Object
Creates imputed dataset from a mids.nmi
or mids.1chain
object.
complete.mids.nmi( x, action=c(1,1) ) complete.mids.1chain( x, action=1 )
x |
Object of class |
action |
A vector of length two indicating to indices of between and within
imputed dataset for for |
See also the corresponding mice::complete
function
and mitml::mitmlComplete
.
Imputation methods: mice.nmi
, mice.1chain
## Not run: ############################################################################# # EXAMPLE 1: Nested multiple imputation and dataset extraction for TIMSS data ############################################################################# library(BIFIEsurvey) data(data.timss2, package="BIFIEsurvey" ) datlist <- data.timss2 # remove first four variables M <- length(datlist) for (ll in 1:M){ datlist[[ll]] <- datlist[[ll]][, -c(1:4) ] } #*************** # (1) nested multiple imputation using mice imp1 <- miceadds::mice.nmi( datlist, m=4, maxit=3 ) summary(imp1) #*************** # (2) nested multiple imputation using mice.1chain imp2 <- miceadds::mice.nmi( datlist, Nimp=4, burnin=10,iter=22, type="mice.1chain") summary(imp2) #************** # extract dataset for third orginal dataset the second within imputation dat32a <- miceadds::complete.mids.nmi( imp1, action=c(3,2) ) dat32b <- miceadds::complete.mids.nmi( imp2, action=c(3,2) ) ############################################################################# # EXAMPLE 2: Imputation from one chain and extracting dataset for nhanes data ############################################################################# library(mice) data(nhanes, package="mice") # nhanes data in one chain imp1 <- miceadds::mice.1chain( nhanes, burnin=5, iter=40, Nimp=4, method=rep("norm", 4 ) ) # extract first imputed dataset dati1 <- miceadds::complete.mids.1chain( imp1, action=1 ) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.