Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

rmhmodel.ppm

Interpret Fitted Model for Metropolis-Hastings Simulation.


Description

Converts a fitted point process model into a format that can be used to simulate the model by the Metropolis-Hastings algorithm.

Usage

## S3 method for class 'ppm'
rmhmodel(model, w, ..., verbose=TRUE, project=TRUE,
                         control=rmhcontrol(),
                         new.coef=NULL)

Arguments

model

Fitted point process model (object of class "ppm").

w

Optional. Window in which the simulations should be generated.

...

Ignored.

verbose

Logical flag indicating whether to print progress reports while the model is being converted.

project

Logical flag indicating what to do if the fitted model does not correspond to a valid point process. See Details.

control

Parameters determining the iterative behaviour of the simulation algorithm. Passed to rmhcontrol.

new.coef

New values for the canonical parameters of the model. A numeric vector of the same length as coef(model).

Details

The generic function rmhmodel takes a description of a point process model in some format, and converts it into an object of class "rmhmodel" so that simulations of the model can be generated using the Metropolis-Hastings algorithm rmh.

This function rmhmodel.ppm is the method for the class "ppm" of fitted point process models.

The argument model should be a fitted point process model (object of class "ppm") typically obtained from the model-fitting function ppm. This will be converted into an object of class "rmhmodel".

The optional argument w specifies the window in which the pattern is to be generated. If specified, it must be in a form which can be coerced to an object of class owin by as.owin.

Not all fitted point process models obtained from ppm can be simulated. We have not yet implemented simulation code for the LennardJones and OrdThresh models.

It is also possible that a fitted point process model obtained from ppm may not correspond to a valid point process. For example a fitted model with the Strauss interpoint interaction may have any value of the interaction parameter gamma; however the Strauss process is not well-defined for gamma > 1 (Kelly and Ripley, 1976).

The argument project determines what to do in such cases. If project=FALSE, a fatal error will occur. If project=TRUE, the fitted model parameters will be adjusted to the nearest values which do correspond to a valid point process. For example a Strauss process with gamma > 1 will be projected to a Strauss process with gamma = 1, equivalent to a Poisson process.

Value

An object of class "rmhmodel", which is essentially a list of parameter values for the model.

There is a print method for this class, which prints a sensible description of the model chosen.

Author(s)

References

Diggle, P. J. (2003) Statistical Analysis of Spatial Point Patterns (2nd ed.) Arnold, London.

Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical models. Journal of the Royal Statistical Society, series B 46, 193 – 212.

Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. Barndorff-Nielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Computation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80. Pages 79–140.

Kelly, F.P. and Ripley, B.D. (1976) On Strauss's model for clustering. Biometrika 63, 357–360.

See Also

Examples

fit1 <- ppm(cells ~1, Strauss(0.07))
  mod1 <- rmhmodel(fit1)

  fit2 <- ppm(cells ~x, Geyer(0.07, 2))
  mod2 <- rmhmodel(fit2)

  fit3 <- ppm(cells ~x, Hardcore(0.07))
  mod3 <- rmhmodel(fit3)

  # Then rmh(mod1), etc

spatstat.core

Core Functionality of the 'spatstat' Family

v2.1-2
GPL (>= 2)
Authors
Adrian Baddeley [aut, cre], Rolf Turner [aut], Ege Rubak [aut], Kasper Klitgaard Berthelsen [ctb], Achmad Choiruddin [ctb], Jean-Francois Coeurjolly [ctb], Ottmar Cronie [ctb], Tilman Davies [ctb], Julian Gilbey [ctb], Yongtao Guan [ctb], Ute Hahn [ctb], Kassel Hingee [ctb], Abdollah Jalilian [ctb], Marie-Colette van Lieshout [ctb], Greg McSwiggan [ctb], Tuomas Rajala [ctb], Suman Rakshit [ctb], Dominic Schuhmacher [ctb], Rasmus Plenge Waagepetersen [ctb], Hangsheng Wang [ctb]
Initial release
2021-04-17

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.