A Leaps and Bounds Algorithm for finding the best variable subsets
An exact Algorithm for optimizing criteria that measure the quality of k-dimensional variable subsets as approximations to a given set of variables, or to a set of its Principal Components.
eleaps(mat,kmin=length(include)+1,kmax=ncol(mat)-length(exclude)-1,nsol=1, exclude=NULL,include=NULL,criterion="default",pcindices="first_k",timelimit=15, H=NULL,r=0, tolval=1000*.Machine$double.eps, tolsym=1000*.Machine$double.eps,maxaperr=1E-4)
mat |
a covariance/correlation, information or sums of squares and products
matrix of the variables from which the k-subset is to be selected.
See the |
kmin |
the cardinality of the smallest subset that is wanted. |
kmax |
the cardinality of the largest subset that is wanted. |
nsol |
the number of different subsets of each cardinality that are requested . |
exclude |
a vector of variables (referenced by their row/column
numbers in matrix |
include |
a vector of variables (referenced by their row/column
numbers in matrix |
criterion |
Character variable, which indicates which criterion
is to be used in judging the quality of the subsets. Currently,
the "Rm", "Rv", "Gcd", "Tau2", "Xi2", "Zeta2", "Ccr12" and "Wald" criteria are
supported (see the |
pcindices |
either a vector of ranks of Principal Components that are to be
used for comparison with the k-variable subsets (for the Gcd
criterion only, see |
timelimit |
a user specified limit (in seconds) for the maximum time
allowed to conduct the search. After this limit is exceeded, |
H |
Effect description matrix. Not used with the Rm, Rv or Gcd
criteria, hence the NULL default value. See the |
r |
Expected rank of the effects ( |
tolval |
the tolerance level for the reciprocal of the 2-norm
condition number of the correlation/covariance or sums of squares
matrix, i.e., for the ratio of the smallest to the largest eigenvalue of the input matrix.
Matrices with a reciprocal of the condition number smaller than |
tolsym |
the tolerance level for symmetry of the
covariance/correlation/total matrix and for the effects ( |
maxaperr |
the tolerance level for the relative rounding error of the
criterion. When a restricted search in employed subsets where a first order
estimate of this error is higher than |
For each cardinality k (with k ranging from kmin
to kmax
),
eleaps
performs a branch and bound search for the best nsol
variable
subsets according to a specified criterion. Leaps implements Duarte Silva's
adaptation (references [2] and [3]) of Furnival and Wilson's Leaps and
Bounds Algorithm (reference [4]) for variable selection in Regression
Analysis. If the search is not completed within a user defined time
limit, eleaps
exits with a warning message.
The user may force variables to be included and/or excluded from the k-subsets.
In order to improve computation times, the bulk of computations are carried out by C++ routines. Further details about the Algorithm can be found in references [2] and [3] and in the comments to the C++ code. A discussion of the criteria considered can be found in References [1] and [3].
The function checks for ill-conditioning of the input matrix
(specifically, it checks whether the ratio of the input matrix's
smallest and largest eigenvalues is less than tolval
). For an
ill-conditioned input matrix, the search is restricted to its
well-conditioned subsets. The function trim.matrix
may
be used to obtain a well-conditioned input matrix.
In a general descriptive (Principal Components Analysis) setting, the
three criteria Rm, Rv and Gcd can be used to select good k-variable
subsets. Arguments H
and r
are not used in this context.
See reference [1] and the Examples
for a more detailed
discussion.
In the setting of a multivariate linear model, X = A B + U,
criteria Ccr12, Tau2, Xi2 and Zeta2 can be used to select subsets
according to their contribution to an effect characterized by the
violation of a reference hypothesis, CB = 0 (see
reference [3] for
further details). In this setting, arguments mat
and H
should be set respectively to the usual Total (Hypothesis + Error) and
Hypothesis, Sum of Squares and Cross-Products (SSCP) matrices.
Argument r
should be set to the expected rank of H
.
Currently, for reasons of computational efficiency,
criterion Ccr12 is available only when \code{r}<=3.
Particular cases in this setting include Linear Discriminant Analyis
(LDA), Linear Regression Analysis (LRA), Canonical Correlation
Analysis (CCA) with one set of variables fixed, and several extensions of
these and other classical multivariate methodologies.
In the setting of a generalized linear model, criterion Wald can be used
to select subsets according to the (lack of) significance of the discarded
variables, as measured by the respective Wald's statistic (see
reference [5] for further details). In this setting arguments mat
and H
should be set respectively to FI and FI %*% b %*% t(b) %*% FI
, where b is a
column vector of variable coefficient estimates and FI is an estimate of the
corresponding Fisher information matrix.
A list with five items:
subsets |
An |
values |
An |
bestvalues |
A length( |
bestsets |
A length( |
call |
The function call which generated the output. |
[1] Cadima, J. and Jolliffe, I.T. (2001). Variable Selection and the Interpretation of Principal Subspaces, Journal of Agricultural, Biological and Environmental Statistics, Vol. 6, 62-79.
[2] Duarte Silva, A.P. (2001) Efficient Variable Screening for Multivariate Analysis, Journal of Multivariate Analysis Vol. 76, 35-62.
[3] Duarte Silva, A.P. (2002) Discarding Variables in a Principal Component Analysis: Algorithms for All-Subsets Comparisons, Computational Statistics, Vol. 17, 251-271.
[4] Furnival, G.M. and Wilson, R.W. (1974). Regressions by Leaps and Bounds, Technometrics, Vol. 16, 499-511.
[5] Lawless, J. and Singhal, K. (1978). Efficient Screening of Nonnormal Regression Models, Biometrics, Vol. 34, 318-327.
## -------------------------------------------------------------------- ## ## 1) For illustration of use, a small data set. ## Subsets of variables of all cardinalities are sought using the ## RM criterion. ## data(swiss) eleaps(cor(swiss),nsol=3, criterion="RM") ##$subsets ##, , Card.1 ## ## Var.1 Var.2 Var.3 Var.4 Var.5 ##Solution 1 3 0 0 0 0 ##Solution 2 1 0 0 0 0 ##Solution 3 4 0 0 0 0 ## ##, , Card.2 ## ## Var.1 Var.2 Var.3 Var.4 Var.5 ##Solution 1 3 6 0 0 0 ##Solution 2 4 5 0 0 0 ##Solution 3 1 2 0 0 0 ## ##, , Card.3 ## ## Var.1 Var.2 Var.3 Var.4 Var.5 ##Solution 1 4 5 6 0 0 ##Solution 2 1 2 5 0 0 ##Solution 3 3 4 6 0 0 ## ##, , Card.4 ## ## Var.1 Var.2 Var.3 Var.4 Var.5 ##Solution 1 2 4 5 6 0 ##Solution 2 1 2 5 6 0 ##Solution 3 1 4 5 6 0 ## ##, , Card.5 ## ## Var.1 Var.2 Var.3 Var.4 Var.5 ##Solution 1 1 2 3 5 6 ##Solution 2 1 2 4 5 6 ##Solution 3 2 3 4 5 6 ## ## ##$values ## card.1 card.2 card.3 card.4 card.5 ##Solution 1 0.6729689 0.8016409 0.9043760 0.9510757 0.9804629 ##Solution 2 0.6286185 0.7982296 0.8791856 0.9506434 0.9776338 ##Solution 3 0.6286130 0.7945390 0.8777509 0.9395708 0.9752551 ## ##$bestvalues ## Card.1 Card.2 Card.3 Card.4 Card.5 ##0.6729689 0.8016409 0.9043760 0.9510757 0.9804629 ## ##$bestsets ## Var.1 Var.2 Var.3 Var.4 Var.5 ##Card.1 3 0 0 0 0 ##Card.2 3 6 0 0 0 ##Card.3 4 5 6 0 0 ##Card.4 2 4 5 6 0 ##Card.5 1 2 3 5 6 ## ##$call ##eleaps(cor(swiss), nsol = 3, criterion="RM") ## -------------------------------------------------------------------- ## ## 2) Asking only for 2- and 3- dimensional subsets and excluding ## variable number 6. ## data(swiss) eleaps(cor(swiss),2,3,exclude=6,nsol=3,criterion="rm") ##$subsets ##, , Card.2 ## ## Var.1 Var.2 Var.3 ##Solution 1 4 5 0 ##Solution 2 1 2 0 ##Solution 3 1 3 0 ## ##, , Card.3 ## ## Var.1 Var.2 Var.3 ##Solution 1 1 2 5 ##Solution 2 1 4 5 ##Solution 3 2 4 5 ## ## ##$values ## card.2 card.3 ##Solution 1 0.7982296 0.8791856 ##Solution 2 0.7945390 0.8686515 ##Solution 3 0.7755232 0.8628693 ## ##$bestvalues ## Card.2 Card.3 ##0.7982296 0.8791856 ## ##$bestsets ## Var.1 Var.2 Var.3 ##Card.2 4 5 0 ##Card.3 1 2 5 ## ##$call ##eleaps(cor(swiss), 2, 3, exclude = 6, nsol = 3, criterion = "gcd") ## -------------------------------------------------------------------- ## ## 3) Searching for 2- and 3- dimensional subsets that best approximate ## the spaces generated by the first three Principal Components ## data(swiss) eleaps(cor(swiss),2,3,criterion="gcd",pcindices=1:3,nsol=3) ##$subsets ##, , Card.2 ## ## Var.1 Var.2 Var.3 ##Solution 1 4 5 0 ##Solution 2 5 6 0 ##Solution 3 4 6 0 ## ##, , Card.3 ## ## Var.1 Var.2 Var.3 ##Solution 1 4 5 6 ##Solution 2 3 5 6 ##Solution 3 2 5 6 ## ## ##$values ## card.2 card.3 ##Solution 1 0.7831827 0.9253684 ##Solution 2 0.7475630 0.8459302 ##Solution 3 0.7383665 0.8243032 ## ##$bestvalues ## Card.2 Card.3 ##0.7831827 0.9253684 ## ##$bestsets ## Var.1 Var.2 Var.3 ##Card.2 4 5 0 ##Card.3 4 5 6 ## ##$call ##eleaps(cor(swiss), 2, 3, criterion = "gcd", pcindices = 1:3, nsol = 3) ## -------------------------------------------------------------------- ## ## 4) An example of subset selection in the context of Multiple Linear ## Regression. Variable 5 (average car price) in the Cars93 MASS library ## data set is regressed on 13 other variables. A best subset of linear ## predictors is sought, using the default criterion ("TAU_2") which, ## in the case of a Linear Regression, is merely the standard Coefficient ## of Determination, R^2 (as are the other three criteria for the ## multivariate linear hypothesis, "XI_2", "CCR1_2" and "ZETA_2"). ## library(MASS) data(Cars93) CarsHmat <- lmHmat(Cars93[,c(7:8,12:15,17:22,25)],Cars93[,5]) names(Cars93[,5,drop=FALSE]) ## [1] "Price" colnames(CarsHmat$mat) ## [1] "MPG.city" "MPG.highway" "EngineSize" ## [4] "Horsepower" "RPM" "Rev.per.mile" ## [7] "Fuel.tank.capacity" "Passengers" "Length" ## [10] "Wheelbase" "Width" "Turn.circle" ## [13] "Weight" eleaps(CarsHmat$mat, kmin=4, kmax=6, H=CarsHmat$H, r=1) ## $subsets ## , , Card.4 ## ## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6 ## Solution 1 4 5 10 11 0 0 ## ## , , Card.5 ## ## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6 ## Solution 1 4 5 10 11 12 0 ## ## , , Card.6 ## ## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6 ## Solution 1 4 5 9 10 11 12 ## ## ## $values ## card.4 card.5 card.6 ## Solution 1 0.7143794 0.7241457 0.731015 ## ## $bestvalues ## Card.4 Card.5 Card.6 ## 0.7143794 0.7241457 0.7310150 ## ## $bestsets ## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6 ## Card.4 4 5 10 11 0 0 ## Card.5 4 5 10 11 12 0 ## Card.6 4 5 9 10 11 12 ## ## -------------------------------------------------------------------- ## 5) A Linear Discriminant Analysis example with a very small data set. ## We consider the Iris data and three groups, defined by species (setosa, ## versicolor and virginica). The goal is to select the 2- and 3-variable ## subsets that are optimal for the linear discrimination (as measured ## by the "CCR1_2" criterion). data(iris) irisHmat <- ldaHmat(iris[1:4],iris$Species) eleaps(irisHmat$mat,kmin=2,kmax=3,H=irisHmat$H,r=2,crit="ccr12") ## $subsets ## , , Card.2 ## ## Var.1 Var.2 Var.3 ## Solution 1 1 3 0 ## ## , , Card.3 ## ## Var.1 Var.2 Var.3 ## Solution 1 2 3 4 ## ## ## $values ## card.2 card.3 ## Solution 1 0.9589055 0.967897 ## ## $bestvalues ## Card.2 Card.3 ## 0.9589055 0.9678971 ## ## $bestsets ## Var.1 Var.2 Var.3 ## Card.2 1 3 0 ## Card.3 2 3 4 ## -------------------------------------------------------------------- ## 6) An example of subset selection in the context of a Canonical ## Correlation Analysis. Two groups of variables within the Cars93 ## MASS library data set are compared. The goal is to select 4- to ## 6-variable subsets of the 13-variable 'X' group that are optimal in ## terms of preserving the canonical correlations, according to the ## "ZETA_2" criterion (Warning: the 3-variable 'Y' group is kept ## intact; subset selection is carried out in the 'X' ## group only). The 'tolsym' parameter is used to relax the symmetry ## requirements on the effect matrix H which, for numerical reasons, ## is slightly asymmetric. Since corresponding off-diagonal entries of ## matrix H are different, but by less than tolsym, H is replaced ## by its symmetric part: (H+t(H))/2. library(MASS) data(Cars93) CarsHmat <- lmHmat(Cars93[,c(7:8,12:15,17:22,25)],Cars93[,4:6]) names(Cars93[,4:6]) ## [1] "Min.Price" "Price" "Max.Price" ## colnames(CarsHmat$mat) ## [1] "MPG.city" "MPG.highway" "EngineSize" ## [4] "Horsepower" "RPM" "Rev.per.mile" ## [7] "Fuel.tank.capacity" "Passengers" "Length" ## [10] "Wheelbase" "Width" "Turn.circle" ## [13] "Weight" eleaps(CarsHmat$mat, kmin=4, kmax=6, H=CarsHmat$H, r=3, crit="zeta2", tolsym=1e-9) ## $subsets ## , , Card.4 ## ## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6 ## Solution 1 3 4 10 11 0 0 ## ## , , Card.5 ## ## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6 ## Solution 1 4 5 9 10 11 0 ## ## , , Card.6 ## ## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6 ## Solution 1 4 5 9 10 11 12 ## ## ## $values ## card.4 card.5 card.6 ## Solution 1 0.4827353 0.5018922 0.5168627 ## ## $bestvalues ## Card.4 Card.5 Card.6 ## 0.4827353 0.5018922 0.5168627 ## ## $bestsets ## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6 ## Card.4 3 4 10 11 0 0 ## Card.5 4 5 9 10 11 0 ## Card.6 4 5 9 10 11 12 ## ## Warning message: ## ## The effect description matrix (H) supplied was slightly asymmetric: ## symmetric entries differed by up to 3.63797880709171e-12. ## (less than the 'tolsym' parameter). ## The H matrix has been replaced by its symmetric part. ## in: validnovcrit(mat, criterion, H, r, p, tolval, tolsym) ## -------------------------------------------------------------------- ## 7) An example of variable selection in the context of a logistic ## regression model. We consider the last 100 observations of ## the iris data set (versicolor an verginica species) and try ## to find the best variable subsets for the model that takes species ## as response variable. data(iris) iris2sp <- iris[iris$Species != "setosa",] logrfit <- glm(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width, iris2sp,family=binomial) Hmat <- glmHmat(logrfit) eleaps(Hmat$mat,H=Hmat$H,r=1,criterion="Wald",nsol=3) ## $subsets ## , , Card.1 ## Var.1 Var.2 Var.3 ## Solution 1 4 0 0 ## Solution 2 1 0 0 ## Solution 3 3 0 0 ## , , Card.2 ## Var.1 Var.2 Var.3 ## Solution 1 1 3 0 ## Solution 2 3 4 0 ## Solution 3 2 4 0 ## , , Card.3 ## Var.1 Var.2 Var.3 ## Solution 1 2 3 4 ## Solution 2 1 3 4 ## Solution 3 1 2 3 ## $values ## card.1 card.2 card.3 ## Solution 1 4.894554 3.522885 1.060121 ## Solution 2 5.147360 3.952538 2.224335 ## Solution 3 5.161553 3.972410 3.522879 ## $bestvalues ## Card.1 Card.2 Card.3 ## 4.894554 3.522885 1.060121 ## $bestsets ## Var.1 Var.2 Var.3 ## Card.1 4 0 0 ## Card.2 1 3 0 ## Card.3 2 3 4 ## $call ## eleaps(mat = Hmat$mat, nsol = 3, criterion = "Wald", H = Hmat$H, ## r = 1) ## -------------------------------------------------------------------- ## It should be stressed that, unlike other criteria in the ## subselect package, the Wald criterion is not bounded above by ## 1 and is a decreasing function of subset quality, so that the ## 3-variable subsets do, in fact, perform better than their smaller-sized ## counterparts.
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.