AIC weight-based conditional probabilities.
Returns the best model by AIC, and computes the probabilities according to AIC weight-based conditional probabilities (Wagenmakers & Farrell, 2004).
umxWeightedAIC(models, digits = 2)
models |
a list of models to compare. |
digits |
(default 2) |
Best model
Wagenmakers E.J., Farrell S. (2004), 192-196. AIC model selection using Akaike weights. Psychonomic Bulletin and Review. 11, 192-196. https://pubmed.ncbi.nlm.nih.gov/15117008/
Other Miscellaneous Stats Functions:
FishersMethod()
,
SE_from_p()
,
geometric_mean()
,
harmonic_mean()
,
oddsratio()
,
reliability()
,
umxCov2cor()
,
umxHetCor()
,
umx_apply()
,
umx_cor()
,
umx_means()
,
umx_r_test()
,
umx_round()
,
umx_scale()
,
umx_var()
,
umx
l1 = lm(mpg~ wt + disp, data=mtcars) l2 = lm(mpg~ wt, data=mtcars) umxWeightedAIC(models = list(l1, l2))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.