Simulate Mendelian Randomization data
umx_make_MR_data returns a dataset containing 4 variables: A variable of interest (Y), a putative cause (X), a qtl (quantitative trait locus) influencing X, and a confounding variable (U) affecting both X and Y.
umx_make_MR_data( nSubjects = 1000, Vqtl = 0.02, bXY = 0.1, bUX = 0.5, bUY = 0.5, pQTL = 0.5, seed = 123 )
nSubjects |
Number of subjects in sample |
Vqtl |
Variance of QTL affecting causal variable X (Default 0.02) |
bXY |
Causal effect of X on Y (Default 0.1) |
bUX |
Confounding effect of confounder 'U' on X (Default 0.5) |
bUY |
Confounding effect of confounder 'U' on Y (Default 0.5) |
pQTL |
Decreaser allele frequency (Default 0.5) |
seed |
value for the random number generator (Default 123) |
The code to make these Data. Modified from Dave Evans 2016 Boulder workshop talk.
- data.frame
umx_make_TwinData
Other Data Functions:
noNAs()
,
umxFactor()
,
umxHetCor()
,
umx_as_numeric()
,
umx_cont_2_quantiles()
,
umx_lower2full()
,
umx_make_TwinData()
,
umx_make_fake_data()
,
umx_make_raw_from_cov()
,
umx_polychoric()
,
umx_polypairwise()
,
umx_polytriowise()
,
umx_read_lower()
,
umx_read_prolific_demog()
,
umx_rename()
,
umx_reorder()
,
umx_score_scale()
,
umx_select_valid()
,
umx_stack()
,
umx
df = umx_make_MR_data(10000) str(df) ## Not run: m1 = umxTwoStage(Y ~ X, ~qtl, data = df) plot(m1) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.