Helper providing boilerplate start values for means and variance in twin models
xmu_starts
can handle several common/boilerplate situations in which means and variance start values
are used in twin models.
xmu_starts( mzData, dzData, selVars = selVars, sep = NULL, equateMeans = NULL, nSib, varForm = c("Cholesky"), SD = TRUE, divideBy = 3 )
mzData |
Data for MZ pairs. |
dzData |
Data for DZ pairs. |
selVars |
Variable names: If sep = NULL, then treated as full names for both sibs. |
sep |
All the variables full names. |
equateMeans |
(NULL) |
nSib |
How many subjects in a family. |
varForm |
currently just "Cholesky" style. |
SD |
= TRUE (FALSE = variance, not SD). |
divideBy |
= 3 (A,C,E) 1/3rd each. Use 1 to do this yourself post-hoc. |
varStarts and meanStarts
Other xmu internal not for end user:
umxModel()
,
umxRenameMatrix()
,
umx_APA_pval()
,
umx_fun_mean_sd()
,
umx_get_bracket_addresses()
,
umx_make()
,
umx_standardize()
,
umx_string_to_algebra()
,
umx
,
xmuHasSquareBrackets()
,
xmuLabel_MATRIX_Model()
,
xmuLabel_Matrix()
,
xmuLabel_RAM_Model()
,
xmuMI()
,
xmuMakeDeviationThresholdsMatrices()
,
xmuMakeOneHeadedPathsFromPathList()
,
xmuMakeTwoHeadedPathsFromPathList()
,
xmuMaxLevels()
,
xmuMinLevels()
,
xmuPropagateLabels()
,
xmuRAM2Ordinal()
,
xmuTwinSuper_Continuous()
,
xmuTwinSuper_NoBinary()
,
xmuTwinUpgradeMeansToCovariateModel()
,
xmu_CI_merge()
,
xmu_CI_stash()
,
xmu_DF_to_mxData_TypeCov()
,
xmu_PadAndPruneForDefVars()
,
xmu_bracket_address2rclabel()
,
xmu_cell_is_on()
,
xmu_check_levels_identical()
,
xmu_check_needs_means()
,
xmu_check_variance()
,
xmu_clean_label()
,
xmu_data_missing()
,
xmu_data_swap_a_block()
,
xmu_describe_data_WLS()
,
xmu_dot_make_paths()
,
xmu_dot_make_residuals()
,
xmu_dot_maker()
,
xmu_dot_move_ranks()
,
xmu_dot_rank_str()
,
xmu_extract_column()
,
xmu_get_CI()
,
xmu_lavaan_process_group()
,
xmu_make_TwinSuperModel()
,
xmu_make_bin_cont_pair_data()
,
xmu_make_mxData()
,
xmu_match.arg()
,
xmu_name_from_lavaan_str()
,
xmu_path2twin()
,
xmu_path_regex()
,
xmu_print_algebras()
,
xmu_rclabel_2_bracket_address()
,
xmu_safe_run_summary()
,
xmu_set_sep_from_suffix()
,
xmu_show_fit_or_comparison()
,
xmu_simplex_corner()
,
xmu_standardize_ACEcov()
,
xmu_standardize_ACEv()
,
xmu_standardize_ACE()
,
xmu_standardize_CP()
,
xmu_standardize_IP()
,
xmu_standardize_RAM()
,
xmu_standardize_SexLim()
,
xmu_standardize_Simplex()
,
xmu_start_value_list()
,
xmu_summary_RAM_group_parameters()
,
xmu_twin_add_WeightMatrices()
,
xmu_twin_check()
,
xmu_twin_get_var_names()
,
xmu_twin_make_def_means_mats_and_alg()
,
xmu_twin_upgrade_selDvs2SelVars()
data(twinData) selDVs = c("wt", "ht") mzData = twinData[twinData$zygosity %in% "MZFF", ] dzData = twinData[twinData$zygosity %in% "DZFF", ] round(sqrt(var(dzData[,tvars(selDVs, "")], na.rm=TRUE)/3),3) xmu_starts(mzData, dzData, selVars=selDVs, nSib= 2, sep="", equateMeans=TRUE, varForm="Cholesky") # Variance instead of SD round(var(dzData[,tvars(selDVs, "")], na.rm=TRUE)/3,3) xmu_starts(mzData, dzData, selVars = selDVs, nSib = 2, sep= "", equateMeans= TRUE, varForm= "Cholesky", SD= FALSE) # one variable xmu_starts(mzData, dzData, selVars= "wt", nSib = 2, sep="", equateMeans = TRUE) # Ordinal/continuous mix data(twinData) twinData= umx_scale_wide_twin_data(data=twinData,varsToScale="wt",sep= "") # Cut BMI column to form ordinal obesity variables cuts = quantile(twinData[, "bmi1"], probs = c(.5, .8), na.rm = TRUE) obLevels = c('normal', 'overweight', 'obese') twinData$obese1= cut(twinData$bmi1,breaks=c(-Inf,cuts,Inf),labels=obLevels) twinData$obese2= cut(twinData$bmi2,breaks=c(-Inf,cuts,Inf),labels=obLevels) # Make the ordinal variables into mxFactors ordDVs = c("obese1", "obese2") twinData[, ordDVs] = umxFactor(twinData[, ordDVs]) mzData = twinData[twinData$zygosity %in% "MZFF",] dzData = twinData[twinData$zygosity %in% "DZFF",] xmu_starts(mzData, dzData, selVars = c("wt","obese"), sep= "", nSib= 2, equateMeans = TRUE, SD= FALSE) xmu_starts(mxData(mzData, type="raw"), mxData(mzData, type="raw"), selVars = c("wt","obese"), sep= "", nSib= 2, equateMeans = TRUE, SD= FALSE) # ============== # = Three sibs = # ============== data(twinData) twinData$wt3 = twinData$wt2 twinData$ht3 = twinData$ht2 selDVs = c("wt", "ht") mzData = twinData[twinData$zygosity %in% "MZFF", ] dzData = twinData[twinData$zygosity %in% "DZFF", ] xmu_starts(mzData, dzData, selVars=selDVs, sep="", nSib=3, equateMeans=TRUE) xmu_starts(mzData, dzData, selVars=selDVs, sep="", nSib=3, equateMeans=FALSE)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.