Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

indpower

Indicator Power of Species


Description

Indicator power calculation of Halme et al. (2009) or the congruence between indicator and target species.

Usage

indpower(x, type = 0)

Arguments

x

Community data frame or matrix.

type

The type of statistic to be returned. See Details for explanation.

Details

Halme et al. (2009) described an index of indicator power defined as IP_I = sqrt(a*b), where a = S / O_I and b = 1 - (O_T - S) / (N - O_I). N is the number of sites, S is the number of shared occurrences of the indicator (I) and the target (T) species. O_I and O_T are number of occurrences of the indicator and target species. The type argument in the function call enables to choose which statistic to return. type = 0 returns IP_I, type = 1 returns a, type = 2 returns b. Total indicator power (TIP) of an indicator species is the column mean (without its own value, see examples). Halme et al. (2009) explain how to calculate confidence intervals for these statistics, see Examples.

Value

A matrix with indicator species as rows and target species as columns (this is indicated by the first letters of the row/column names).

Author(s)

Peter Solymos

References

Halme, P., Mönkkönen, M., Kotiaho, J. S, Ylisirniö, A-L. 2009. Quantifying the indicator power of an indicator species. Conservation Biology 23: 1008–1016.

See Also

indval (package labdsv) for the indicator species analysis of Dufrêne & Legendre. Function beals estimates individual cell probabilities of species occurrences.

Examples

data(dune)
## IP values
ip <- indpower(dune)
## and TIP values
diag(ip) <- NA
(TIP <- rowMeans(ip, na.rm=TRUE))

## p value calculation for a species
## from Halme et al. 2009
## i is ID for the species
i <- 1
fun <- function(x, i) indpower(x)[i,-i]
## 'c0' randomizes species occurrences
os <- oecosimu(dune, fun, "c0", i=i, nsimul=99)
## get z values from oecosimu output
z <- os$oecosimu$z
## p-value
(p <- sum(z) / sqrt(length(z)))
## 'heterogeneity' measure
(chi2 <- sum((z - mean(z))^2))
pchisq(chi2, df=length(z)-1)
## Halme et al.'s suggested output
out <- c(TIP=TIP[i], 
    significance=p,
    heterogeneity=chi2,
    minIP=min(fun(dune, i=i)),
    varIP=sd(fun(dune, i=i)^2))
out

vegan

Community Ecology Package

v2.5-7
GPL-2
Authors
Jari Oksanen, F. Guillaume Blanchet, Michael Friendly, Roeland Kindt, Pierre Legendre, Dan McGlinn, Peter R. Minchin, R. B. O'Hara, Gavin L. Simpson, Peter Solymos, M. Henry H. Stevens, Eduard Szoecs, Helene Wagner
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.